大多数三相电动机不允许接入它们的中性连接。SVM利用电机内部的浮动中性点,并使用完全DC母线(buss)电压。在图1中,示出了三个电压矢量:Va在X轴上、Vb移动120度、Vc移动240度。
图1:表示三相电动机的三个绕组电势的电压空间矢量。
DC母线电压(Vbuss)跨越与Vb和Vc相交的两条水平线。在这种情况下,三相线-线电压Vbc充分利用了Vbuss。
图2示出了当电压矢量从X轴旋转90度且同时在Vbuss的中心保持中性时发生的情况。 目前,母线电压不够大、不足以产生电压矢量Va。这是当纯三相正弦曲线在载波上调制以产生三相PWM时的情况。 为了创建三个对称正弦曲线,必须减小所有电压矢量的幅度。每个电压矢量必须减小的量如下式所述:
这将峰-峰值电压降低了15.5%。
图2:通过将中性点保持在Vbuss的中心,电压矢量Vb的幅度必须在电动机旋转的某些角度处减小。
SVM技术采用图2中的三相矢量,并将它们全部向下移动,使得相电压的大小不必减小。 采用图2并将其中性向下移动、如图3所示,允许电压矢量Va具有相同幅度。在图3的情况下,中性点从Vbuss /2向下偏移,偏移量如下:
对图3来说,向下移动没问题,但当Va直接指向下方而非上方时,情况会怎样?在这种情况下,我们需要将所有电压矢量向上移动等于0.1443×Vbuss的量。 换句话说,需要被添加到所有电压矢量的共模偏差的量是动态的,并且是空间矢量旋转角度的函数。
图3:中性向下移动允许矢量Va保持更大幅度。
图4示出了SVM波形的360度旋转。你还可以看到电压矢量的方向和中性点经历的路径。
图4:30度角时,SVM波形的完整旋转。Va是该矢量图的参考点。
SVM用在微控制器(MCU)中时,计算量必须保持最小。当初次研究SVM时,得出的印象是:必须创建三个正弦曲线和一个三角波形。如果是这种情况,那么SVM将对处理器和内存有高要求。因为不需要正弦计算或查找表,所以比预期简单得多。让我们首先了解如何创建三相波形。
在FOC系统中,控制在同步参考系中完成,其中大多数信号看起来像DC波形。然后,通过逆Park变换将同步信号变换成静止参考系。在静止参考系中只出现两个随时间变化的信号。当处于稳定状态时,信号采取正弦和余弦形式。 SVM必须将Vα和Vβ这两个信号从静止参考系取出,并将它们转换成三相(Va,Vb和Vc)输出。在嵌入式处理器中,SVM算法的输出必须是可以使用MCU的PWM外设轻松创建的PWM波形。
创建SVM的三个过程如下:
3.从Va、Vb和Vc中减去Vneutral。
在步骤3之后,SVM信号被加载到PWM外设比较寄存器中。图5中的五条曲线显示了每个信号的不同幅度,它们产生了在其峰值处具有100%占空比的SVM波形。
图5:用于从上述三个步骤创建SVM的波形。
在上一节中,我们创建了一个SVM波形,其峰值可以达到Vbuss的100%占空比。这产生纯线到线的电压正弦波。仍然存在生成更多电压的可能性,但不是以纯正弦波形式。
参见图6,目前已经描述的SVM波形可以覆盖绿色圆圈内的任何地方。可以通过过调制使用橙色阴影的未使用区域。当处于完全过调制时,电压矢量Vs将覆盖整个六边形。过调制将产生梯形输出波形,其中优点是有更高的基波正弦波幅度(带一些谐波)和更低的开关损耗。
图6:SVM电压矢量旋转360度时所经过的轨迹。
从图5中,Vα和Vβ的最大和最小峰值是±1/√3,这对应于图6的绿色圆圈的周边轨迹。随着克拉克变换的输入变得大于1/√3 ,SVM波形将增长到超过±½,而这是不可能的。
图7:对具有2/3幅度输入的SVM波形的过调制进行克拉克变换。虚线、水平、品红线表示旧的1/2量级。
图7示出了当克拉克变换的输入幅度变得大于1/√3、等于2/3时发生的情况。如品红虚线所示,SVM的旧幅度在±1/2;现在峰值幅度在1/√3。 这个SVM技术的好处是:过渡到过调制很容易。限制波形输出所需要的是限制SVM输出的Va、Vb和Vc的最大值和最小值。 具有过调制的总SVM系统的框图如图8所示。
图8:具有过调制的SVM框图,用于对MCU进行编码。
SVM电压输出受三个饱和元素的限制,这三个饱和元素设置为100%和0%占空比,即±1/2。 完全过调制的结果波形如图9所示。
图9:完全过调制时的SVM算法。
当将电压信号从两相α-β转换为三相A、B、C时,空间矢量调制是用于场定向控制的有效技术。SVM利用移位三相中性值以允许直流母线的完全线-线利用。已经给出了用于创建SVM的一种技术。这种技术的优点是易于用MCU实现,因为它不需要任何正弦计算或查找表。此外,它可以非常平稳地转换到过调制。
*参考书目
Mohan,Ned,《高级电力驱动:使用Simulink进行分析、控制和建模》,明尼苏达电力电子研究与教育,2001年。*
关注最前沿的电子设计资讯,请关注“电子工程专辑微信公众号”。