作者:麦利
最近我们采访了斯坦福工学院的院长James Plummer先生,就CMOS、工程、教育和全球化等方面的问题展开了广泛的讨论。
在担任院长期间,Plummer主动联合包括Exxon Mobile和General Electric在内的许多公司制定了一个为期十年、金额高达2.25亿美元的可替代能源研究计划。Plummer是一位在半导体技术方面备受尊敬的研究员,目前还是Intel公司董事会成员。
CMOS工艺微缩前景如何?
我认为我们正临近拐点,因为新一代半导体工厂的成本极其巨大。因此这个行业中的兼并重组不可避免。
我们不久就将看到只有少数几家顶尖公司能够控制这一领域中的先进技术。一些人甚至认为只有三到四家顶尖公司--Intel、三星和一两家代工厂。
斯坦福工学院的院长James Plummer先生 |
会有哪些技术问题呢?
我非常担心光刻问题。193nm光刻所达到的程度真是让我难以置信。过去我们用来实现四分之一以上波长的技术正在被淘汰,而且越来越昂贵。
使用193nm光刻也许能实现两代或三代工艺改进。在15nm或11nm,我无法想象如果不用极紫外线光刻(EUV)如何能实现这些工艺。
EUV技术仍存在许多技术障碍,但即使EUV能够使用,每台机器成本也要高达7,500万至1亿美元。只有少数公司能够负担得起,考虑到还要再加上掩模成本--这意味着半导体行业将发生显着的变化。
有哪些变化呢?
你必须要拥有像微处理器或内存芯片那样的巨大市场才能收回这些高额成本。我认为除非有什么事情发生,否则代工模型会遇到很大的问题。
一些人认为,代工厂会紧跟大型微处理器和内存供应商们使用的技术。问题是,如果真是这样,那么行业动态会怎样呢?它可能会改变幸存公司思考这个行业的方式,因为他们将拥有前沿技术。
如今Intel公司无疑是领先一代的公司。如果他们和三星公司领先两代或三代,在可能上市的产品种类方面将使这个行业发生许多改变。
有没有可以替代EUV的技术?
事实上人们研究了许多技术。比如电子束光刻,它可以工作在很小的尺寸,但吞吐量非常慢,以至于需要数百甚至上千个并行电子束。结果是巨复杂的机器,远比不上EUV。
CMOS之外还有什么技术?
我不知道有哪种纳米技术可以替代CMOS。业内是有人在研究新的开关型器件以期替代CMOS,比如自旋电子技术,但目前看来还没有一种技术能替代基本的CMOS开关。
纳米管晶体管实际上是使用碳而不是硅的CMOS。但你仍必须印刷图案,并制作开关器件,因此这些纳米管晶体管基本上仍属于MOSFET开关。纳米管仍需要栅极和所有的硅电路图案。
那么,你对CMOS替代技术的前景有何看法?
我的观点是有很长的路要走。非常像CMOS的东西面世还需要很长的时间。
许多电子行业似乎正在从IT转向能源和健康护理。
我并不认为是转换,而是扩张。
斯坦福工学院在IT方面的影响一直是非常巨大的,我认为这种影响不会马上消除。但在过去10年中,一些同样重要的专业领域得到了迅速发展--特别是能源/环境领域和生物科技。
我认为在今后十年或二十年中你会看到这种扩张在硅谷发生。像历史上因IT而闻名一样,硅谷将再次因这两大领域的新创企业而闻名。
风险投资公司在清洁技术方面的投资才刚刚开始。已经投身生物技术的硅谷企业数量多到令人咋舌。目前这些公司还没有被大众所认识,但将变得越来越突出。
{pagination}
斯坦福学院将如何重新组织以适应这个新时代?
我认为我们在清洁技术和生物科技方面的影响力将与我们曾在IT方面拥有的影响力一样巨大。
如果退回到10年前,你会发现这里有一些人在加工光电产品或研究电池,但都是小打小闹,部分原因是在这些领域缺少联邦资金。
6年或8年前,我们组成了一个产业联盟来研究全球气候和能源问题,准备在10年时间内提供2.25亿美元资金,用于人类必须为之奋斗的各种替代能源的基础性研究。
今天你会发现250个系中可能有50个涉足能源领域,这与十年前有着天壤之别。虽然我们在能源方面的总投入仍小于IT,但现在已经具有可比性。
随着六七年前新的生物工程系的成立,生物科技领域的形势也大致相仿。
这方面的前景如何?
所有这三个领域--IT、能源和生物科技的前景都难以置信的好,几乎有无限的机会在前面等着。在今后十年或二十年中,所有这三大领域将诞生更多像谷歌和雅虎这样的知名公司。
我一直在与我们的EE和CS系合作研究能源机遇。他们在IT方面是如此成功,以至于他们需要一些劝说才能转向这些新领域,不过他们正在这么做。对他们来说很难想象他们周边的世界正在发生改变,需要面对新的全球性问题和机遇,而他们可能并没有站在最高处看问题。
{pagination}
工程技术职业将如何变化?
以前曾被学生视作机会的领域正在悄然发生改变。
10年或20年前他们要立志做计算机科学家。现在,在能源和生物科技等领域中有大量让他们感兴趣的事,因此从某种角度上讲他们引领着系的发展。他们非常关心环境和人类苦楚,想要为之做点什么。
如果你问他们想做什么,答案肯定不仅是赚钱。他们说的第一句话是想做出贡献,解决地球上需要解决的其中一些问题--而作为工程师,他们有能力做出贡献。
在能源领域,确实有义务寻找可持续的替代能源解决方案,不仅为了自己的国家,而且为了整个地球。生物科技领域的目标是显着改进健康护理体验。
教育方面有哪些变化?
我们准备给学生提供必要的技能训练,为多公司职业生涯作好准备。现在我们正在做的大量工作是培养T形人才。纵向部分是深入的技术教育,横向部分是一整套软技实力-创造力、创新力,以企业家的方式看待工作,以及如何创造性地说话和思考。
这将越来越多的成为多学科工作,是吗?
是的,人们正在从事的大多数令人感兴趣的研究工作是解决涉及材料、计算和非工程专业技术的多学科问题。让团队一起高效工作是解决这些问题的唯一方式。能源解决方案非常需要那些懂得法律和政策以及技术的人才。在生物科技领域你需要复杂的FDA认证。
随着中国和其他发展中国家设立自己的优秀大学,教育全球化会出现哪些变化?
就目前来说,我们拥有大量的学生--世界上最优秀和最聪明的学生。今天,最大的生源来自中国和印度,以前则是日本和台湾。这些外国学生的数量超过毕业生的一半,在一些学校甚至多达75%。亚洲这些国家的大学毕业生质量极好。
目前美国顶尖学校需要对这些学生继续保持吸引力,并且尽我们所能留住他们。从长期来看,中国和印度都会鼓励制定他们自己的世界级工程计划。在台湾和韩国这种情况已经发生。
你可能争论是否是5年或50年时间以后的事--我的观点是可能需要25年时间,但不管多长时间他们肯定会这样做。随着他们的进步,愿意来美国的学生数量将下降--特别是当学生们在自己国家看到了世界一流的经济机遇。因此就长期来看,我们必须采取不同的策略。
那是什么策略?
我们国家没有足够的人想从事科学和工程职业。对策就是能做更好的工作,这个要求比较苛刻,但我很乐观。
如果你看看每个发达国家--即使是韩国和台湾,他们都在说同一件事:没有足够的学生选取科学与工程,因此这是发达国家的通病。
这是一组艰难的学科,但还有更难的。我们的K-12教育并不是世界一流的,当然就没有做足够好的工作来帮助年轻人理解科学和工程是什么。
这是个很大的问题,但很多人认为根本原因在于老师,老师没那么优秀,或没那么鼓舞人心。我们需要足够多的付出以吸引高质量的人才来从事这些工作,并提供有助于他们的连续教育和暑期经验,这样当这些老师走进教室时不仅见多识广,还具有更多的激情。
在许多情况下老师没有受过专门的科学、数学和工程培训,因此他们无法教好这些课目,或较好地鼓励学生思考这些职业。
大学能做些什么?
一般的高中生对科学和工程职业并没有太多的理解。而许多大学要求高中生决定他们必须选择一门主课以便申请工程学院或大学。
一旦你了解伯克利大学或斯坦福大学,就会发现找到通往工程大学的捷径很困难。因此我们对所作所为感到真的非常愚蠢。我们看到来这里的学生并不知道他们想要成为一位工程师,而是设法成为工程师。
因此我们需要帮助K-12教育系统理解科学和工程方面的机会,然后改变大学招收学生的方式。一些工学院认为这是不可能的。他们认为学生必须像任何新生那样学习微积分和物理,否则他们就将被淘汰。我认为我们可以重新思考课程设置。如果我们不这样做,受伤害的还是我们自己。
斯坦福学院确实承诺先让学生进入大学,然后试图使学生转向工程领域。大多数工程学院不这样做。
点击进入参考原文:Interview: Stanford's top engineer from chips to ABCs, by Rick Merritt
本文来自《电子工程专辑》8月刊,版权所有,拒绝转载。
{pagination}
Interview: Stanford's top engineer from chips to ABCs
by Rick Merritt
On CMOS scaling
We sat down recently with James Plummer, dean of Stanford's school of engineering, for a wide ranging interview on the outlook for CMOS, engineering, education and globalization.
In his role as dean, Plummer helped rally companies including Exxon Mobile, General Electric and others to create a ten-year, $225 million program for research into alternative energy. He is also a widely regarded researcher in semiconductor technology, and currently sits on the Intel Corp. board.
EE Times: What's the outlook for CMOS scaling?
James Plummer: I think we are reaching an inflection point because the costs of a new generation semiconductor factory are just huge numbers. So consolidation in the industry is inevitable.
We will see before much longer only a few players at state of the art who will control the technology. Some think there will be three or four companies at state of the art--Intel, Samsung and a foundry or two.
EET: What are the technology issues?
We can get maybe two or three process generations more with 193nm lithography. At 15 or certainly 11nm, I just can't see how those generations can be done without extreme ultraviolet lithography.
The EUV option still has a bunch of technical hurdles, but even if it works the machines cost $75 to $100 million each. Only a few players can afford them and—along with the cost of masks--this will mean significant changes in the industry I believe.
EET: What kinds of changes?
Some think the foundries will get stuck at a tech generation behind what the big microprocessor and memory vendors use. The question is what the industry dynamics look like if that happens. It could change the way the survivors think about the industry because they will have a technology edge.
Intel now arguably has a generation lead. If they and Samsung have a two or three generation lead that changes the industry a lot in terms of what kinds of products might come to market.
EET: Are there any alternatives to EUV?
EET: What lies beyond CMOS?
Nanotube transistors are basically CMOS using carbon versus silicon. But you still have to print patterns and make switching devices, and these are still basically MOSFET switches. Nanotubes still need gates and all the patterning of silicon circuits.
EET: So how would you characterize the outlook for a replacement for CMOS?
{pagination}
On alternative energy and IT
EET: Much of the electronics industry seems to be working on a transition form IT to energy and health care.
The impact this school has had in IT has been enormous. I don’t think that's going away anytime soon But in the last ten years some equally significant pillars have been growing—particularly the energy/environment area and biotech.
I think you will see this expansion happening in Silicon Valley over next decade or two. The Valley will be as known for startups in these other two areas as historically it has been known for IT.
The investments VCs are making in clean tech are just beginning. It's amazing how much of the Valley is already in biotech. It hasn't gotten the publicity yet, but it will become increasingly apparent.
EET: How is Stanford retooling for this new era?
If you go back ten years, you would have found a few people fabing photovoltaics or working on batteries here, but it was a pretty minor thing. That was driven in part by a lack of federal funding in these areas
Six or eight years ago a few of us put together an industrial consortium on global climate and energy, providing $225 million over ten years in funding for basic research across the whole spectrum of alternative energy that people had to compete for.
Today you will find out of 250 faculty, probably 50 have a footprint in the energy space. It's a night-and-day difference from a decade ago. Our total footprint in energy is still smaller than IT but it's comparable now.
It's a similar situation in biotech with a new bioengineering department created six or seven years ago.
EET: What's the outlook going forward?
I've been working with our EE and CS departments on the energy opportunities. They have been so successful in IT that they need some persuasion to move into these new areas, but they are doing it. It's hard for them to imagine the world may be changing around them, there is a new set of global problems and opportunities to contribute to and they may not be at top of that mountain.
On engineering and education
EET: How is the profession of engineering changing?
Ten or twenty years ago they aspired to be computer scientists. Now there's a huge amount of interest in these other areas [of energy and biotech] so to some extent they have led the faculty. They care a lot about the environment and human suffering and want to do something about that.
If you ask them what they want to do, it's not just make a lot of money. The first words out of their mouths are that they want to have an impact and solve some of these problems we need to solve as a planet--and as engineers they can make an impact.
In the energy area, there's a real commitment to figure out sustainable alternative energy solutions, not just for this country but for this planet. In biotech the goal is to dramatically improve health care.
EET: What's changing in education?
EET: And it's increasingly multidisciplinary work, isn't it?
EET: What's happening in the globalization of education as China and other developing countries create their own great universities?
In the short term, the top U.S. schools need to continue to be attractive to these students as the place to go and do everything we can to keep them here. Longer term, China, India, aspire to have their own world-class engineering programs. This is already happening in Taiwan and Korea.
You can debate if it's five or 50 years away--my view is it's probably 25 years out--but they will get there. As they get closer, the numbers of students who want to come to the U.S. will decline—especially as students see world-class economic opportunities at home. So in the long term, we have to have a different strategy.
EET: What's that strategy?
If you look at every developed country--even South Korea and Taiwan--they say the same thing: not enough students pick science and engineering, so this is something symptomatic of the developed world.
It’s a tough set of disciplines, but there's more to it than that. We have K-12 education that is not world class and certainly does not do a good enough job of helping young people understand what science and engineering is about.
It’s a huge problem, but a bunch of people think the root cause is the teachers. The teachers are not that good or inspiring. We need to pay enough to get high quality people taking those jobs and provide the continuing education and summer experiences that are helpful for them so when they walk into classroom they are not only informed but enthusiastic.
The teachers are not trained in science, math and engineering in many cases and so they cannot teach these subjects well or inspire students to consider these kinds of careers.
EET: What can the universities do?
Yet once you get to Berkeley or Stanford, finding a back door to the engineering college is very rough. So we've been really stupid about how we do this. We see students come here not knowing they want to be an engineer, then trying to become engineers.
So we need to help K-12 understand the opportunities in science and engineering, and then change the way we admit students to universities. Some engineering schools think that’s impossible. They say students have to take calculus and physics as freshman or they are history. I say we can rethink the curriculum. If we don’t do that, we have shot ourselves in the foot.
Stanford actually does admit to the university, then tries to make it possible for students to shift into engineering. Most engineering schools do not.