获奖理由:
东芝电子元件及存储装置株式会社(“东芝”)推出业界首款[1]2200V双碳化硅(SiC)MOSFET模块——“MG250YD2YMS3”。 新模块采用东芝第3代SiC MOSFET芯片,其漏极电流(DC)额定值为250A,适用于光伏发电系统和储能系统等使用DC 1500V的应用。
类似上述的工业应用通常使用DC 1000V或更低功率,其功率器件多为1200V或1700V产品。然而,预计未来几年内DC 1500V将得到广泛应用,因此东芝发布了业界首款2200V产品。
MG250YD2YMS3具有低导通损耗和0.7V(典型值)的低漏极-源极导通电压(传感器)[2]。此外,它还具有较低的开通和关断损耗,分别为14mJ(典型值)[3]和11mJ(典型值)[3],与典型的硅(Si)IGBT相比降低了约90%[4]。这些特性均有助于提高设备效率。由于MG250YD2YMS3可实现较低的开关损耗,用户可采用模块数量更少的两电平电路取代传统的三电平电路,有助于设备的小型化。
东芝将不断创新,持续满足市场对高效率和工业设备小型化的需求。
Notes:
[1] Among dual SiC MOSFET modules. Toshiba survey, as of August 2023.
[2] Test condition: ID=250A, VGS=+20V, Tch=25°C
[3] Test condition: VDD=1100V, ID=250A, Tch=150°C
[4] Toshiba comparison of switching loss for a 2300V Si module and MG250YD2YMS3, the new all SiC MOSFET module, as of August 2023 (performance values for the 2300V Si module is a Toshiba estimate based on papers published in or before March 2023.)
获奖理由:
The NSF030120D7A0 is a Silicon Carbide based 1200 V power MOSFET in a well-established 7-pin TO-263 plastic package for surface mounting PCB technology. The excellent RDSon temperature stability combined with its fast switching speed makes it a product of choice in high power and high voltage industrial applications like E-vehicle charging infrastructure, photovoltaic inverters and motor drives.
RDSon is a critical performance parameter for SiC MOSFETs because it impacts conduction power losses. However, many manufacturers concentrate on the nominal value, neglecting the fact that it can increase by more than 100% as device operating temperatures rise, resulting in considerable conduction losses. Nexperia identified this as a limiting factor in the performance of many currently available SiC devices and leveraged the features of its innovative process technology to ensure that its new SiC MOSFETs offer industry-leading temperature stability, with the nominal value of RDSon increasing by only 38% over an operating temperature range from 25 °C to 175 °C.
Tightest threshold voltage, VGS(th) specification, allows these discrete MOSFETs to offer balanced current-carrying performance when connected in parallel. Furthermore, low body diode forward voltage (VSD) is a parameter which increases device robustness and efficiency, while also relaxing the dead-time requirement during freewheeling operation.