广告

生成式AI大模型火爆,十问GPT与AIGC真实现状与未来发展

2023-03-23 04:17:42 IDC 阅读:
新一代AI热度持续走高,然而由于其较低的技术成熟度、较高的部署成本,实际落地还需谨慎。但宏观趋势上,以大模型、生成式AI为代表的快速迭代的技术必然会催生全新的AI时代。
广告

近日OpenAI陆续发布ChatGPT,GPT-4,引发了AI界的全民狂欢,文生图类应用如StableDiffusion、Midjourney以及DALL·E2也开始快速流行。百度则于3月16日召开文心一言发布会,展示了中国厂商的大模型以及生成式AI能力。至此,人工智能市场正式开启了全新的时代——大模型驱动的AI时代

1.大模型、ChatGPT以及AIGC的关系

IDC定义的AI应用均是指基于机器学习算法的AI决策系统。大模型则是指读取海量数据、参数规模巨大的算法模型。业界一般认为超过千亿级参数即为大模型,其训练过程中可能使用了上千张以上的GPU/CPU芯片。ChatGPT与AIGC均为大模型的应用场景之一。ChatGPT可以类比原有的对话式AI应用、AI赋能的搜索类应用。AIGC则可以分为生成文本、生成图像、生成视频,也可以归为大模型的应用场景之一。

2.GPT-4为代表的大模型的变革所在

OpenAI自发布GPT1.0模型之后,一直在持续迭代,陆续发布GPT2.0、GPT3.0和GPT 3.5,本次发布GPT4.0是其持续投入AI大模型的必然阶段。相比前几个模型,GPT-4的参数量更大,模型迭代时间更长,也能够给出更准确的结果。IDC认为,新版本的发布是大模型循序渐进发展的必然成果。正如百度集团首席执行官李彦宏所说:“公司每一年都会发布大模型的新版本,是多年努力的自然延续”。

3.ChatGPT可能带来的产业影响

ChatGPT实质是对话式AI的应用,对话式AI的落地已经非常广泛。根据IDC追踪的人工智能市场规模数据,对话式AI市场规模在2022年达到54.6亿元人民币,其市场渗透率相对已经饱和。ChatGPT引发的浪潮促使主流厂商在其对话式AI应用中引入大模型,将带动对话AI相关市场新一轮增长。此外,在搜索、营销场景中,ChatGPT类型的应用则可能衍生出全新的产品形态。

4.市面上可用的产品

关于AIGC,除了大众所熟知的StableDiffusion, Midjourney以及DALL·E2之外,也有些商业公司对此提供云端支持。目前亚马逊云科技通过IndustryAI以及SageMaker提供了Stable Diffusion的支持。百度的文心一言已于3月16日开启邀测,提供文学创作、商业文案创作、数理逻辑的推算、自然语言理解以及多模态生成五大功能。此外,还有很多数字人的公司也采用了AIGC相关技术。从技术的角度,当前市面上的产品大多只能做到文生图,文生视频类产品的发布则还需要时间,值得期待。

关于大模型:在开源社区已经发布的大模型之外,目前提供商用的大模型包括微软Azure上整合的GPT大模型、百度智能云以及百度飞桨支持的文心大模型、华为云盘古大模型、阿里云M6大模型。由本土厂商研发的大模型,大多支持本地化部署。

5.引发的AI行业变革

过去几年部署的AI应用,接下来几年都有可能被基于大模型的AI所替代。升级迭代可能会从优先具备海量数据的场景开始。当大模型支撑的AI应用成为主流,不能利用大模型能力的厂商将失去竞争优势。

未来的工作中,AI助理将替代更多人类的工作。诸如文生图的应用,诸如各领域初级内容的搜索,均可以借助AI生成的内容。

6.可能的投资规模

目前已经公开的大模型诸如GPT系列、Bert系列所耗费的算力根据公开资料可以查到。而真正落地到产业界,具体的投资规模要视应用场景决定。投资成本与所需的算力,是否部署完整的大模型,以及要推理的数据流量相关。

7.带动的市场机会

纯AI算力市场在这一波AI热潮中最先最直接受益的即AI算力提供商,包括芯片厂商、AI服务器厂商,以及支撑大模型训练和推理的AI算力云服务商。

大模型与算力的结合:即AIaaS+AIPaaS。为市场提供大模型与算力结合后高度优化的方案,以帮助用户降低硬件使用门槛、提高开发效率、降低整体投资成本。典型的解决方案如百度的“AI大底座”,商汤的“AI大装置”。

大模型即服务:开放大模型开发平台供外部用户使用。这一市场属于高度创新的市场,但仍存在较高的进入壁垒。

8.从何处着手跟随本次AI浪潮

大模型厂商都在着手将现有的AI软件升级为大模型支撑的AI应用。可以根据应用场景优先级与合作伙伴联系引入大模型支持的AI。而在MaaS(模型即服务)产品层面,市场上可选的成熟产品并不多,预计今年下半年会有数十家厂商的产品上线。可以率先选择数据隐私要求不高的领域在公有云上测试大模型能力。

9.新一代AI需要注意的问题

生成式AI生成内容的版权需提前规划。生成式AI读取海量数据后生成的图片等内容有可能会引起版权问题,需要提前从规则上加以控制。

对原有流程的改变:一方面生成式AI生成的内容还需要人类审核才能发布,另一方面可能会要求工作流程上做出改变以适配AIGC的加入。

鉴于其仍处于技术成熟度的早期阶段,在传统行业应用场景不十分清晰,投入产出比目前也难以评估。

10.跳出今天的AIGC看未来AI应用

借鉴今天的文生图、文生视频类应用,其实大多是基于过去几年已有的小模型通过各种技术路线实现的AI应用。类似的、各行各业的应用场景,都可以基于现有的AI模型,以低代码的形式拼接出人人可上手的AI应用,甚至未来的AI应用,都可能是输入自然语言直接输出结果的形式。

IDC中国研究总监卢言霞表示,新一代AI热度持续走高,然而由于其较低的技术成熟度、较高的部署成本,实际落地还需谨慎。但宏观趋势上,以大模型、生成式AI为代表的快速迭代的技术必然会催生全新的AI时代。

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • Imagination GPU为边缘智能提供高效率的加速 在“2024奕斯伟计算开发者伙伴大会”上,来自Imagination英国总部的专家发表了主题为《用RISC-V CPU + PowerVR GPU迎接边缘生成式AI的到来》的演讲。
  • 面向AI的下一代以太网技术 随着AI应用的广泛普及和数据流量的迅猛增长,传统以太网技术在延迟、带宽、拥塞控制和高性能可扩展方面天然局限,导致其难以应对AI网络的复杂需求。
  • 智能手机疲软,但超薄柔性玻璃出货量势头正猛 可折叠盖板玻璃必须符合以下所有标准:透明、可折叠、坚固、平整和轻薄,这些基本要素缺一不可。
  • 全球折叠屏手机快速增长,中国品牌压制三星 • 得益于西欧、关键亚洲市场和拉丁美洲市场的增长,以及中国品牌的持续领先,全球折叠屏手机出货量在2024年第二季度同比增长了48%。 • 荣耀凭借其在西欧特别强劲的表现,成为最大的贡献者,成为该地区排名第一的品牌。 • 摩托罗拉的Razr 40系列在北美和拉丁美洲表现良好,为其手机厂商的出货量贡献了三位数的同比增长。 • 我们预计,头部中国手机品牌厂商的不断增加将至少在短期内抑制三星Z6系列在第三季度的发布。
  • AI网络物理层底座: 大算力芯片先进封装技术 AI技术的发展极大地推动了对先进封装技术的需求,在高密度,高速度,高带宽这“三高”方面提出了严苛的要求。
  • 智能手表OLED面板超 60%中国制造 智能手表在新冠肺炎疫情后获得了越发广泛的关注,其功能包括语音、健康检查、运动和活动追踪、GPS、通信和个人数据监控。全球智能手表显示面板的出货量已从2022年的2.59亿片增长到2023年的3.51亿片。到 2024年,Omdia预测智能手表显示面板的出货量将达到3.59亿片,其中TFT LCD占63%,OLED占37%。
  • 无处不在的Arm软硬件生态赋能开发者AI创新 随着计算变得愈发复杂,计算效率的重要性更胜以往。
  • 荣耀拿下欧洲横折手机榜第一 既然可以保留几乎相同的旧款手机,或者以更低的价格购买旧款手机,为什么要购买最新款的智能手机呢?但变化已经到来,智能手机品牌厂商正带着其最前沿的创新技术重返欧洲市场……
  • 如何选择数据中心的最佳运营地点 选择最佳数据中心位置需要评估几个关键标准,以确保最佳性能、效率和未来增长。每项标准在确定数据中心运营地点的适宜性方面都起着至关重要的作用……
  • 高通收购Sequans后,获得了哪些增强? • 高通通过收购Sequans的4G技术加强物联网领导地位 • 高通已经以2亿美元收购了Sequans Communications的4G技术,扩展到蜂窝物联网市场。 • 该交易增强了高通在低功耗广域网(LPWA)领域的业务,通过Sequans先进的4G物联网技术解决了性能和效率方面的差距。 • 该收购为Sequans提供了用于5G开发的资金,同时允许其继续利用其4G物联网技术。
广告
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了