尽管摩尔定律的步子已大幅放慢,但工艺节点仍已演进至1nm以下。在最新的逻辑节点中,传统器件架构已不具优势,而互补场效应晶体管(CFET)是一种极具吸引力的器件架构。本文介绍CFET在先进节点中的集成,单片和顺序集成方案评估,并提出了顺序CFET工艺流程,包括低温层转移工艺。

互补场效应晶体管(CFET)在4T轨道单元设计中优于叉片晶体管,使其成为1nm以下逻辑技术节点的极具吸引力的器件架构。

而imec在VLSI 2021上介绍的叉片器件架构,将纳米片晶体管系列扩展到1nm甚至1nm以下的逻辑节点。在叉片器件中,由于减小了n型和p型晶体管之间的间距,因此可以使有效沟道宽度大于传统的全环绕栅极纳米片器件。这将有利于改善晶体管的驱动电流(或直流性能)。此外,更小的n-p间距可以进一步降低标准单元高度,逐步将标准单元推向4T轨道高度设计,从而使得4条单元内部金属线都能适配标准单元高度。

但是对于4T单元设计和窄至16nm的金属间距来说,即使叉片变得很窄也难以提供所需的性能。这也正是互补FET或CFET可以发挥作用的地方。Julien Ryckaert表示:“在CFET架构中,nMOS和pMOS器件相互堆叠。堆叠从单元高度角度看消除了n-p间距,进一步实现了有效沟道宽度的最大化,进而使驱动电流最大化。还可以借助由此产生的面积增益将轨道高度推至4T及以下。”

图1:从FinFET到纳米片,再到叉片,最后到CFET。

两种不同的实现方案:单片和顺序

目前业界正在探索两种可能的集成方案,以实现具有挑战性的nMOS-pMOS垂直堆叠:即单片式和顺序式。

单片CFET流程从底部沟道的外延生长开始,然后是中间牺牲层的沉积,然后是再是顶部沟道的外延生长。Naoto Horiguchi认为:“虽然这似乎是构建CFET最直接的方法,但处理流程相当复杂。例如,这种堆叠方法会导致垂直结构的纵横比非常高,从而为鳍、栅极、间隔物和源极/漏极触点的后续图案处理带来了严峻挑战。”

可以使用由几个区块组成的顺序制造流程来制造CFET。首先,底层器件被处理直到触点。接下来,利用晶圆对晶圆键合技术,并通过晶圆转移在该层的顶部创建一个较厚的半导体层。然后再集成顶层器件,连接顶栅和底栅。Julien Ryckaert指出:“从集成的角度来看,这个流程比单片流程更简单,因为底层和顶层器件都可以用传统的‘二维’方式进行单独处理。此外,它还为n型和p型器件提供了集成不同沟道材料的独特可能性。”

这两个流程各有自己的优缺点。通过开发模块和集成步骤、量化PPAC (功率、性能、面积、成本)成本效益、简化每个工艺流程的复杂性,Imec做出了很大的贡献。

PPAC基准测试:优化的顺序CFET是单片CFET的有效替代方案

之前,作者对4T标准单元设计中的单片CFET与顺序CFET作出了PPAC评估。

Julien Ryckaert指出:从这个基准来看,与导致有效电容上升的顺序流程相比,使用单片工艺流程制造的CFET消耗的面积更少,性能也更高。然而,通过以下三个优化,可以将顺序CFET的轨道与单片CFET的轨道相提并论。这三个优化为:

(1)自对准的栅极合并(见图2中的v2);

(2)省略栅极帽(见图2中的v3);

(3)使用混合定向技术,简称HOT。

图2:纳米片(NS)、叉片(FS)和CFET(单片和顺序)的栅极横截面示意图。基本顺序型CFET(=v1)比单片型CFET更宽更高。通过优化流程(包括自对准栅极合并(v2)和无栅极帽(v3)),顺序CFET在面积消耗方面接近单片CFET。

HOT允许独立的优化顶部和底部器件的晶体取向和应变工程,不会增加工艺流程成本。例如在n-on-p配置中,可以在顶部使用具有<100>取向的硅晶圆,从而为顶部nMOS器件提供最高的电子迁移率。而底部的pMOS空穴迁移率则受益于<110>的硅晶圆取向。“尽管单片CFET仍然是首选,但顺序工艺流程的独特之处在于它可以利用晶圆取向方面的这种差异。我们的基准测试表明,通过这些优化,对于未来的4T轨道设计,顺序CFET流程可以成为更复杂的单片CFET的有效替代方案,”Julien Ryckaert表示。

模块和集成步骤的逐步改进

近年来,imec报告了在改进单片和顺序CFET的模块和集成步骤方面取得的进展。例如其展示了通过优化关键模块步骤实现的单片集成CFET架构。

同期,imec也报告了顺序CFET的逐步改进成果。虽然底层和顶层器件可以用传统的“二维”方式分开处理,但晶圆转移带来了特定的挑战。例如,为了避免对底层器件产生任何负面影响,对两层间转移和顶层器件处理都有热预算限制(大约500℃或以下)。这属于顶层器件的栅极堆叠可靠性问题,通常需要900℃量级的热处理。早些时候,imec展示了保持良好栅极堆叠可靠性的新方法,其中包括对pMOS顶部器件进行低温氢等离子体处理。此外,imec还报告了通过开发无空隙薄键合氧化物工艺在介电晶片键合步骤中的进展。

智能切割层转移:顺序CFET的关键构建块

在A.Vandooren等人发表的2022 VLSI论文中,imec评估了三种不同的层转移过程。本文研究了各种工艺选项对顶部(绝缘体上完全耗尽型硅(FD-SOI))和底部(体FinFET)器件性能的影响。

Naoto Horiguchi认为:“从成本的角度来看,特别有前途的是SOITEC的低温智能切割流程,它使用工程化的大块施主晶圆来实现低温下的薄层分割。这种方法的美妙之处在于它允许复用施主晶圆,因而使其成为一种极具成本效益的解决方案。其他两种方法都依赖于通过研磨和硅回蚀去除衬底,不允许重复使用施主晶圆。”

图3:无固化或低温固化的SOITEC低温智能切割层转移流程示意图。

通过进一步优化,在使用低温智能切割进行概念验证层转移后处理的顶部器件,可以从劣化的电气性能中恢复。Naoto Horiguchi表示:“由于低温固化未经优化,这些器件的电子迁移率较低。Soitec进一步完善了其解决方案,并表明可以通过优化低温固化步骤来恢复迁移率损失,从而提高硅沟道的晶体质量。鉴于这种方法的成本效益,采用新开发工艺条件的智能切割是在顺序CFET工艺流程中执行层转移的有效选择。它提供了一个通用流程,支持CFET之外的3D顺序堆叠应用,例如逻辑存储器或逻辑上逻辑器件的3D顺序集成。”

图4:低温智能切割层转移方案中,优化和参考(概念验证)工艺对比时的电子有效场迁移率与反转电荷的关系。

图中迹线B(紫色)具有更好的迁移性,因为它采用了额外的低温固化步骤。

器件测试结果显示了顶部和底部器件之间良好的电气互连性,这通过功能逆变器链得到了验证。此外,通过集成氢等离子体处理步骤,顶层pMOS器件的栅堆叠可靠性得以保持。

图5:3D顺序堆叠器件的TEM横截面。

“需要强调的是,这种架构还不是真正的CFET最终实现,”Naoto Horiguchi补充道,“例如,在设想的顺序CFET架构中,底部器件的金属互连层(M1B)是不存在的。我们的测试工具主要用于演示作为顺序CFET和其他3D顺序堆叠实现的关键模块的层转移改进。未来,将继续努力优化集成步骤,完成真正顺序CFET的最终实现。”

(参考原文:Integrating CFET into the logic technology roadmap beyond 1 nm )

本文为《电子工程专辑》2022年11月刊杂志文章,版权所有,禁止转载。点击申请免费杂志订阅

责编:Jimmy.zhang
本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
阅读全文,请先
您可能感兴趣
美国试图通过技术封锁维持其全球主导地位,而中国则希望通过自主创新实现产业升级和经济转型。未来很长一段时间,中美之间合作与竞争并存的局面可能会成为一种常态。
这个法案原本已获得韩国执政党乃至企划财政部一致同意,但由于在野党因弹劾局势而态度转变,该法案在12月10日的全体会议上被取消。
相对Rapidus所宣称的5万亿日元的量产资金需求,目前日本政府以及金融资本对其的支持还远远不够,这最终要取决于Rapidus进行的2纳米芯片量产进展。
Beyond Gravity是一家总部位于瑞士苏黎世的高科技公司,主要业务包括为运载火箭提供结构件,并在卫星产品和星座领域处于领先地位。其光刻部门位于瑞士苏黎世和德国德累斯顿附近的Coswig,拥有约210名员工。蔡司(ZEISS)成功收购了Beyond Gravity的光刻部门,并将其整合到其半导体制造技术部门(ZEISS SMT)......
芯片是方的,晶圆却是圆的;如果把封装的载片晶圆换成方形面板,情况会是怎样?
根据方运舟的规划,哪吒汽车将在全力推进首次公开募股(IPO)的过程中,力争在未来2至3年内实现国内外销量各占一半的目标。同时,公司预计在2025年使毛利率转正,并在2026年实现整体盈利。
目前,智能终端NFC功能的使用频率越来越高,面对新场景新需求,ITMA多家成员单位一起联合推动iTAP(智能无感接近式协议)标准化项目,预计25年上半年发布1.0标准,通过功能测试、兼容性测试,确保新技术产业应用。
中科院微电子所集成电路制造技术重点实验室刘明院士团队提出了一种基于记忆交叉阵列的符号知识表示解决方案,首次实验演示并验证了忆阻神经-模糊硬件系统在无监督、有监督和迁移学习任务中的应用……
C&K Switches EITS系列直角照明轻触开关提供表面贴装 PIP 端子和标准通孔配置,为电信、数据中心和专业音频/视频设备等广泛应用提供创新的多功能解决方案。
投身国产浪潮向上而行,英韧科技再获“中国芯”认可
今日,长飞先进武汉基地建设再次迎来新进展——项目首批设备搬入仪式于光谷科学岛成功举办,长飞先进总裁陈重国及公司主要领导、嘉宾共同出席见证。对于半导体行业而言,厂房建设一般主要分为四个阶段:设备选型、设
来源:苏州工业园区12月17日,江苏路芯半导体技术有限公司掩膜版生产项目迎来重要进展——首批工艺设备机台成功搬入。路芯半导体自2023年成立以来,专注于半导体掩膜版的研发与生产,掌握130nm至28n
近期,多个储能电站项目上新。■ 乐山电力:募资2亿建200MWh储能电站12月17日晚,乐山电力(600644.SH)公告,以简易程序向特定对象发行A股股票申请已获上交所受理,募集资金总额为2亿元。发
‍‍12月18日,深圳雷曼光电科技股份有限公司(下称“雷曼光电”)与成都辰显光电有限公司(下称“辰显光电”)在成都正式签署战略合作协议。双方将充分发挥各自在技术创新、产品研发等方面的优势,共同推进Mi
对于华为来说,今年的重磅机型都已经发完了,而明年的机型已经在研发中,Pura 80就是期待很高的一款。有博主爆料称,华为Pura 80将会用上了豪威OV50K传感器,同时电池容量达到5600毫安时。至
来源:IT之家12 月 18 日消息,LG Display 韩国当地时间今日宣布,已将自行开发的“AI 生产系统”投入到 OLED 生产线的日常运行之中,该系统可提升 LG Display 的 OLE
近期,高科视像、新视通、江苏善行智能科技等企业持续扩充COB产能。插播:加入LED显示行业群,请加VX:hangjia188■ 高科视像:MLED新型显示面板生产项目(二期)招标12月18日,山西高科
扫描关注一起学嵌入式,一起学习,一起成长在嵌入式开发软件中查找和消除潜在的错误是一项艰巨的任务。通常需要英勇的努力和昂贵的工具才能从观察到的崩溃,死机或其他计划外的运行时行为追溯到根本原因。在最坏的情
在上海嘉定叶城路1688号的极越办公楼里,最显眼的位置上,写着一句话:“中国智能汽车史上,必将拥有每个极越人的名字。”本以为这句话是公司的企业愿景,未曾想这原来是命运的嘲弄。毕竟,极越用一种极其荒唐的
极越汽车闪崩,留下一地鸡毛,苦的是供应商和车主。很多人都在关心,下一个倒下的新能源汽车品牌,会是谁?我们都没有未卜先知的超能力,但可以借助数据管中窥豹。近日,有媒体统计了15家造车新势力的销量、盈亏情