如今,随着技术的发展,数字示波器拥有越来越多的测量参数和强大的测量计算能力,并内置了很大的灵活性,因此工程师可以利用现有的测量工具进行各种衍生测量。本文就针对具体实例,阐述了如何利用标准时间常数测量参数,实现时域的指数时间常数的测量。

示波器是时域测量的主要仪器。目前,大部分数字示波器包括大约25个内置测量参数作为标准补充。通过添加应用定制选件,参数可以增加到一百多个。即使拥有如此多的测量能力,也有一些测量必须利用现有的测量工具来导出。其中之一就是指数信号时间常数的测量。

许多物理现象与电容器和电感器这类储能器件的充放电相关,将会产生具有指数上升沿或下降沿的波形,其中指数时间常数揭示了有关基本过程和元件值的信息。能够利用示波器测量指数时间常数,对更好地了解电路工作很有用。但是,示波器没有直接读出指数时间常数的测量参数。本文将展示如何通过手动光标测量,以及利用示波器的信号处理和内置测量功能直接读取时间常数,来实现指数时间常数测量。让我们从回顾指数信号开始。

一个典型的指数过程可以由以下任一方程定义,具体取决于指数的斜率:

上升指数:V(t)=1–a*e-t/τ+b

衰减指数:V(t)=a*e-t/τ+b

这里:

V(t)是随时间的变化的电压,单位为V;

a和b是任意常数;

τ是指数时间常数,单位为s;

t为时间,单位为s。

图1是一个指数脉冲示例,显示了在示波器上采集的上升沿和下降沿。此示例中的指数常数为a=1和b=0。为了提高信噪比并提高测量精度,对波形进行了平均。

图1:利用示波器的光标测量指数脉冲的衰减或下降沿的时间常数。

考虑到衰减指数方程,对于常数a=1和常数b=0,当时间t等于时间常数τ时,电压值等于1/e或0.368。这是在示波器上测量时间常数的关键。通过设置光标,使其测量的振幅变化为常数a的0.368倍,此时光标之间的时间差即为时间常数。在示例中,左侧光标读取的幅度值为860.4 mV。调整右光标,直到其幅度读数尽可能接近该值的36.8%,在本例中为317.6 mV。光标之间的指示时间差为100ns,这是下降沿的时间常数τ。

同理,上升沿的时间常数也可以按图2所示来测定。

图2:指数脉冲上升沿的时间常数测量。

从上升沿的方程来看,相对于开始的一个时间常数处的电压值是最大值的1-0.368或0.632。对于1V峰值信号,再次设置光标,使振幅差为零值以上的0.632V,此时的时间常数为100ns。这种方法采用的是传统技术,可以在任何示波器上完成,也测得了合理的结果,但它确实需要大量的设置。准确性取决于用户正确设置光标的能力。如果可能,最好利用示波器的测量参数,以获得最准确的结果。

如果示波器的可用数学运算包括自然对数函数,并且其测量参数包括斜率或压摆率测量,则可以直接读取时间常数。

对指数函数取自然对数,便得到一个线性函数,其斜率等于指数的时间常数,如图3所示。

图3:指数函数的自然对数是一条斜率与指数时间常数成正比的斜直线。

采集信号的自然对数产生一条直线,这是一个很好的测试,可以确保获取的波形确实是指数的。如果所取信号的自然对数不是一条直线,那么波形就不是指数的。线性自然对数的斜率可以通过测量信号压摆率来计算,压摆率是每单位时间幅度的变化(ΔV/Δt),结果如图中测量参数1所示。结果为9.9965 MV/s。请注意,压摆率测量要求用户选择被测信号的斜率,在这种情况下,信号具有负斜率。时间常数是直线的斜率,是压摆率的倒数或(Δt/ΔV)。本示波器支持利用参数进行计算,包括和、差、积、比例、倒数,以及参数的缩放。P1的倒数在参数P2中计算,当应用于参数P1计算时,返回100ns/V的负斜率。这正是指数波形的时间常数。

指数信号通常表现为高频载波上的调制,它们在射频载波被键控打开或关闭时自然产生。测量此类信号的时间常数需要提取调制包络,如图4所示。

.图4:测量载波指数幅度调制的时间常数需要解调调制信号以提取调制包络。

在本例中,100MHz载波上存在衰减指数幅度调制。数学函数F1利用可选解调函数,来提取显示在已调信号上的指数调制包络。从这一点开始,自然对数函数应用于指数包络,参数读取自然对数轨迹的斜率与之前一样。结果正是100ns的时间常数。

如果示波器没有解调功能,另一种解调技术是对调制载波执行RMS检测。这包括对调制载波进行平方,对平方函数进行滤波,然后对滤波后的函数求平方根,如图5所示。

图5:利用平方、滤波和平方根函数测量指数调制载波的时间常数RMS测量。

RMS解调是一种传统技术。解调后的波形会被滤波操作截断,但这并不妨碍指数时间常数的测量。利用压摆率测量和参数数学运算取其倒数,来确定时间常数。

图6提供了一个实际示例,用于测量遥控门锁fob信号中的射频脉冲串的时间常数。遥控门锁fob利用载波频率为390 MHz的射频脉冲串生成编码信号。

图6:遥控门锁发射器射频信号脉冲的指数衰减时间常数测量。

遥控钥匙产生21个不同宽度的射频脉冲,如顶部迹线所示。考虑到EMI因素,通常要求通过有限的攻击和衰减​​时间来控制RF键控,以最大限度地减少由快速开/关键控引起的频谱“飞溅”。在下面紧靠的迹线中,利用迹线缩放器对第五个脉冲进行了水平展开。脉冲的前沿和后沿呈指数特性。该迹线被进一步展开成下方第三条迹线,以显示的整个衰减幅度。利用解调函数提取指数包络,如最下方的迹线所示。该迹线上方紧邻的是调制包络的自然对数。压摆率参数读数显示,压摆率为165.5 kV/s,而其倒数,即时间常数为6µs。在大约五到六个时间常数之后,信号幅度将衰减到零。

结论

数字示波器内置了很大的灵活性,因此可以利用现有的测量工具进行一些像时间常数测量这类的各种衍生测量。

(参考原文:Measuring exponential time constant using an oscilloscope )

本文为《电子工程专辑》2021年4月刊杂志文章,版权所有,禁止转载。点击申请免费杂志订

责编:Amy.wu
本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
阅读全文,请先
您可能感兴趣
SiC的特定特性要求对MOSFET器件和栅极驱动电路进行仔细选择,以确保安全地满足应用需求,并尽可能提高效率。在本文中,我们将讨论为SiC MOSFET选择栅极驱动器时应考虑的标准。
由于在满足所有要求方面存在不同的权衡,因此很难采用一种适用于所有情况的电流检测方法。
宽禁带半导体(例如SiC和GaN)在可靠性、能效、功率密度和降低成本方面具有重要优势。
ITSA报告对当前的V2X应用进行了分析,并对两个关键的V2X部分进行了展望——使用5.9GHz频谱的直连V2X和使用4G LTE和5G蜂窝通信的网联V2X。此外,该报告还对未来在5.9GHz当前30MHz带宽限制之外的扩展进行了展望。
提升功率密度的需求给功率器件及其封装与冷却技术带来了特定的挑战。
智能嵌入式视觉和机器学习等实时计算密集型应用对能效、硬件级安全性和高可靠性的需求日益增长。同时,不断扩大的航天市场对计算的需求也在不断增加。
目前,智能终端NFC功能的使用频率越来越高,面对新场景新需求,ITMA多家成员单位一起联合推动iTAP(智能无感接近式协议)标准化项目,预计25年上半年发布1.0标准,通过功能测试、兼容性测试,确保新技术产业应用。
中科院微电子所集成电路制造技术重点实验室刘明院士团队提出了一种基于记忆交叉阵列的符号知识表示解决方案,首次实验演示并验证了忆阻神经-模糊硬件系统在无监督、有监督和迁移学习任务中的应用……
C&K Switches EITS系列直角照明轻触开关提供表面贴装 PIP 端子和标准通孔配置,为电信、数据中心和专业音频/视频设备等广泛应用提供创新的多功能解决方案。
投身国产浪潮向上而行,英韧科技再获“中国芯”认可
今日,长飞先进武汉基地建设再次迎来新进展——项目首批设备搬入仪式于光谷科学岛成功举办,长飞先进总裁陈重国及公司主要领导、嘉宾共同出席见证。对于半导体行业而言,厂房建设一般主要分为四个阶段:设备选型、设
投资界传奇人物沃伦·巴菲特,一位94岁的亿万富翁,最近公开了他的遗嘱。其中透露了一个惊人的决定:他计划将自己99.5%的巨额财富捐赠给慈善机构,而只将0.5%留给自己的子女。这引起了大众对于巴菲特家庭
有博主基于曝光的信息绘制了iPhone 17系列渲染图,对比iPhone 16系列,17系列最大变化是采用横置相机模组,背部DECO为条形跑道设计,神似谷歌Pixel 9系列,这是iPhone六年来的
对于华为来说,今年的重磅机型都已经发完了,而明年的机型已经在研发中,Pura 80就是期待很高的一款。有博主爆料称,华为Pura 80将会用上了豪威OV50K传感器,同时电池容量达到5600毫安时。至
2024年度PlayStation游戏奖今日公布,《宇宙机器人》获得年度最佳PS5游戏,《使命召唤:黑色行动6》获得年度最佳PS4游戏。在这次评选中,《宇宙机器人》获得多个奖项,包括最佳艺术指导奖、最
扫描关注一起学嵌入式,一起学习,一起成长在嵌入式开发软件中查找和消除潜在的错误是一项艰巨的任务。通常需要英勇的努力和昂贵的工具才能从观察到的崩溃,死机或其他计划外的运行时行为追溯到根本原因。在最坏的情
 “ 担忧似乎为时过早。 ”作者 | RichardSaintvilus编译 | 华尔街大事件由于担心自动驾驶汽车可能取消中介服务,Uber ( NYSE: UBER ) 的股价在短短几周内从 202
近期,高科视像、新视通、江苏善行智能科技等企业持续扩充COB产能。插播:加入LED显示行业群,请加VX:hangjia188■ 高科视像:MLED新型显示面板生产项目(二期)招标12月18日,山西高科
LG Display  12月18日表示,为加强OLED制造竞争力,自主开发并引进了“AI(人工智能)生产体系”。“AI生产体系”是AI实时收集并分析OLED工艺制造数据的系统。LG Display表
今天上午,联发科宣布新一代天玑芯片即将震撼登场,新品会在12月23日15点正式发布。据悉,这场发布会联发科将推出全新的天玑8400处理器,这颗芯片基于台积电4nm制程打造,采用Arm Cortex A