为了实现高性能的ADC设计,设计师常常穷尽各种设计手段,又常常受到许多制约,因为增加任何电路都将增加误差源。本文介绍了预充电缓冲器在设计中如何保证设计自由度,采用预充电缓冲器,既可以放宽输入放大器驱动要求,又能保证ADC总体精度,另外还能实现更低的总谐波失真。

新型高性能模数转换器(ADC)设计师的目标之一是放宽对外部输入放大器和基准的设计要求,他们的通常做法是内置针对模拟和基准输入的集成式缓冲器。然而,对于高性能ADC而言,在信号链中添加任何元件都会降低整体性能。

设计优先事项包括优选硅工艺、电路精心设计以及良好的布局和IC封装,以优化电压偏移、增益、信噪比(SNR)和总谐波失真(THD)等诸多指标。添加传统的缓冲器会影响这些指标,而且很多时候,这些缓冲器会成为高性能ADC中的主要误差源。预充电缓冲器是针对传统缓冲器的一种替代方案,如图1所示。本文将重点介绍预充电缓冲器在模拟输入通道和基准输入通道中的使用和优势。

图1:预充电缓冲器弥补宽带ADC(ADS127L11-24位、400 KSPS、delta-sigma)性能的示意图。本文资料来源:TI

降低输入放大器驱动要求的方法之一是在ADC输入端使用电荷桶滤波器,其中的差分电容比内置采样电容要大。这个简单的电阻电容网络(图2所示的Rfilt和Cfilt)充当电荷储存器,用以提供输入采样电容(Cin)所需的大部分瞬时电流。外部滤波电容Cfilt将峰值输入电流从相对较高的电流脉冲(几十毫安量级)降低到峰值小于1mA,平均电流仅为数百微安。

使用大的外部输入电容除了能降低峰值电流外还能降低对输入放大器的高带宽要求,从而提供更广泛的放大器选择。这些额外的放大器选项允许设计师在低功耗、直流性能和许多其他设计标准方面做出更好的优化。

然而,使用大型外部输入电容的一个缺点是它限制了最高输入信号频率。实际上它是一个一阶低通电阻电容RC滤波器。另一个缺点是电容器阻抗在较高输入频率下变得非常低,从而容易导致大电流流过电容器。源自输入放大器的这种大电流会导致系统功耗增加,这对于高密度或电池供电的系统来说是非常不利的。

许多低功耗精密放大器可能无法在支持大电流的同时保持良好的信噪比和总谐波失真。对于极低频输入信号或直流输入信号来说,使用大输入滤波电容可能是一种可接受的方法,但对于10kHz或更高的输入频率来说,负载电流和由此产生的功耗可能会变得高的无法接受。

预充电缓冲器的设计灵活性

如果采用预充电缓冲器,既可以放宽输入放大器驱动要求,又不会降低ADC总体精度。预充电缓冲器是一种专用放大器,在采集周期的前半部分为ADC的内置采样电容充电,在采集周期的后半部分断开连接,以实现ADC输入端和内置采样电容之间的直接连接。在采集周期的最后阶段,将内置采样电容直接连接到输入端,这样就可以从信号通道中消除预充电缓冲器带来的任何误差。预充电缓冲器的使用,可以将外部输入放大器的整体动态负载降低99%以上。

在与宽带宽外部输入放大器结合使用时,预充电缓冲器还有一个好处,就是具有更低的总谐波失真。预充电缓冲器与高速输入放大器一起使用,可以将总的谐波失真改进10dB或更多。同时开启高速放大器和内置预充电缓冲器,灵活性得到改善,不过带来的问题是功耗增加了;这就需要在优先考虑低失真还是低功耗之间做出折衷权衡。

图2:典型高电平信号链中采用带有内置预充电缓冲器的全差分输入放大器。

预充电缓冲器的主要缺点是在采集阶段的后半程完成对内置采样电容的充电所需的动态电流很小。然而,这个动态电流还不到直接驱动(不启用预充电缓冲器)输入采样电容所需电流的1%,因此支持使用带宽窄得多的放大器和更小的输入滤波电容。

图2所示的典型高电平信号链中,外部输入放大器和内置预充电缓冲器为Cin充电,而图3则突出显示了使用预充电缓冲器时的时序细节。

图3:粗采样和精细采样阶段的输入采样电容电压(Vcin)示意图。

AIN-Coarse、AIN-Fine和AIN-Reset是内置开关控制信号。当控制电平为1时内置开关打开,当控制电平为0时内置开关关闭。观察内置采样保持电容两端的Vcin电压波形可以发现,预充电缓冲器在AIN-Coarse=1阶段将输入电容电压充电至最终目标值的99.9%左右(3.98V)。而在AIN-Fine=1阶段,外部输入放大器将内置采样电容充电至最终输入电压(4V)。

预充电缓冲器优化输入电流

如前所述,预充电缓冲器降低了驱动输入所需的平均输入电流。在推导启用预充电缓冲器时的平均输入电流公式之前,让我们先推导出在不用预充电缓冲器而是直接驱动输入端时的平均输入电流公式。针对平均输入电流的公式1基于人们熟悉的电容中总电荷公式:

Qin=Cin×Vin                    (1)

其中,Qin是Cin上的总电荷,Vin是采集周期结束时采样电容上的电压,约等于ADC输入端的电压。

由于采样电容在转换阶段结束时被复位为0V,因此可以用公式2表示平均输入电流:

Iavg=Qin×Fmod                   (2)

其中Fmod是调制器采样率或ADC输入端的采样频率。

对于ADS127L11,高速模式下,调制器采样率等于主时钟频率Fclk的一半。将公式3和公式4代入公式2就能得到公式5:

Qin=Cin×Vin                          (3)

Fmod=Fclk /2                   (4)

Iavg=Fclk/2×Cin×Vin                          (5)

使用预充电缓冲器时,外部输入放大器提供的电荷是输入电容上总电荷的一小部分。在公式6、7和8中,G代表预充电缓冲器的增益,理想值G=1,典型范围为0.995<G<1.005。如果将AIN-coarse阶段结束时输入电容充电达到的电压表示为Vin-coarse,则预充电缓冲器提供的电荷为:

Qcoarse=Vin-coarse×Cin                                   (6)

Vin-coarse =G×Vin                             (7)

将公式7代入公式6得到公式8:

Qcoarse=G×Vin×Cin                                     (8)

由于在采集阶段结束时输入电容上的总电荷为Cin×Vin,因此可以将输入端子直接提供的电荷表示为Qfine,如公式9和10所示:

Qtotal=Cin×Vin                                 (9)

Qtotal=Qcoarse+Qfine                                       (10)

重整公式10得到公式11:

Qfine=Qtotal–Qcoarse                                      (11)

将公式8和9代入公式11得到公式12和13:

Qfine=Vin×Cin–G×Vin×Cin                                     (12)

Qfine=(1-G)×Cin×Vin                                 (13)

将公式13和4代入公式2得到公式14,也就是使用预充电输入缓冲器时的平均输入电流。

Iavg-precharge=Fclk/2×(1-G)×Cin×Vin                (14)

将公式5代入公式14得到公式15。我们现在可以看到,不用预充电缓冲器的平均输入电流Iavg现在降低了(1-G)倍,其中G的典型范围为0.995<G<1.005(对ADS127L11而言):

Iavg-precharge=(1-G)×Iavg                  (15)

外部滤波电容Cfilt提供了峰值电流一大部分,但外部输入放大器也需要提供很大的动态电流。与平均电流的降低非常相似,峰值电流的下降也很显著。峰值电流的这种降低通常会带来总失真的降低,这正是使用带有高速输入放大器的预充电缓冲器可以提供更好系统性能的原因。

峰值输入电流受内置AIN-Fine开关电阻Rsw的限制,可使用公式16计算得到。对ADS127L11来说,从AINP和AINN端看过去的差分输入开关电阻典型值为165Ω。在输入电压为4V且没有预充电缓冲器的情况下,每个周期内产生的峰值电流Ipeak接近24mA(公式17),这对于大多数精密放大器来说是相当高的,这也是为什么必须使用输入滤波器来提供大部分峰值电流的原因。

Ipeak=Vin/Rsw          (16)

Ipeak=4V/165ῼ=24mA                        (17)

当使用预充电缓冲器时,输入采样电容上的电压值非常接近AIN-Fine开关闭合时的输入电压——在预充电缓冲器的增益误差范围内。在G=0.995的情况下,预充电缓冲器在直接连接ADC输入端之前,会将输入电容上的电压充电至约3.98V,此时得到的峰值输入电流约为121μA,公式18中就利用了这些值,结果如公式19和20所示。

Ipeak=(Vin-Vcin)/Rsw (18)

Ipeak=(4V-3.98V)/165ῼ (19)

Ipeak=121μA (20)

由于平均输入电流和峰值输入电流均有所下降,因此预充电缓冲器可以使用带宽小于10MHz的外部输入放大器。这就给放大器提供了更多的选择,使低频噪声、宽带噪声、偏移电压和其他指标的优化成为可能。

用于基准输入的预充电缓冲器

ADS127L11还集成了一个基准输入预充电缓冲器。与输入预充电缓冲器非常相似,该基准输入预充电缓冲器亦可降低峰值和平均输入电流。对该器件来说,如果使用4.096V的典型外部基准电压,输入时钟频率为25.6MHz,并工作在高速模式,那么没有预充电缓冲器时的平均输入电流为778μA,这对大多数基准来说都可以轻松驱动,然而,许多系统使用多个ADC通道,比如8个或更多个通道,此时,总的基准电流为8×778μA,即6.2mA,这对于精密基准来说就相当高了。例如,REF6041的最大输出电流为4mA,此时单个基准是无法驱动8个ADC基准输入的。REF7025是另一个不错的选择,可提供出色的低频噪声和极低的长期漂移。尽管REF70系列的最大输出电流为10mA,但为了使用该基准实现最高精度,输出电流应控制的尽可能低。

若采用内置基准预充电缓冲器就可以打破上述限制,因为每个ADC的平均输入电流降至2μA。单个基准即可驱动多个通道(如图4所示),无需担心过载,也无需额外的外部放大器,还能够降低整体电路板尺寸和成本。

图4:用一个基准带动多个内置预充电缓冲器ADC的典型连接图。

根据设计中使用的基准和输入放大器,可能不需要内置预充电缓冲器就能实现预期的系统总体指标。但拥有启用内置预充电缓冲器的选项,将为外部元件的选择提供了更大的灵活性,从而为优化系统设计提供了更多的工具。

(参考原文:Understanding the benefits of pre-charge buffers in ADCs

本文为《电子工程专辑》2022年2月刊杂志文章,版权所有,禁止转载。点击申请免费杂志订阅

本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
您可能感兴趣
无创血糖检测的难点在于无创葡萄糖传感器的研发,通过无创葡萄糖传感器来进行非侵入式的人体血糖检测。目前来说,按检测方式划分,无创葡萄糖传感器主要有光学传感器和电化学传感器两种……
面对未来道路的挑战,新一代汽车的OEM正在积极探索创新之路,努力实现既符合日益严格的法规要求的乘客安全功能,又配备出色音频性能的沉浸式车内娱乐系统,以满足市场和消费者的需求。在这一过程中,OEM可以充分借助TI全新推出芯片产品,重塑车内体验,开启汽车驾乘的新纪元。
通过收购宏晶微电子,康佳集团将能够进一步拓展其在半导体领域的业务版图,提升公司在芯片设计、开发、生产和销售等方面的实力。
“以前大型医疗设备90%以上都是国外进口,现在国产完全自主可控已经非常多,特别感谢(芯原股份)戴伟民董事长把这件事做起来,芯片是所有医疗器械的灵魂,没有芯片很难往前进行。” 蒋田仔教授说道……
无线通讯最大的愿景,是用一张网覆盖整个人类社会,这对整个社会来讲是最经济、效率最高并且成本最低的方式。
美国麻省理工学院和加拿大渥太华大学的科学家们联合研发出一种新型超薄晶体薄膜半导体,其电子迁移速度达到传统半导体的7倍,为电子设备性能的飞跃提供了可能。
TEL宣布自2025年3月1日起,现任TEL中国区地区总部——东电电子(上海)有限公司高级执行副总经理赤池昌二正式升任为集团副总裁,同时兼任东电电子(上海)有限公司总裁和东电光电半导体设备(昆山)有限公司总裁。
预计在2025年,以下七大关键趋势将塑造物联网的格局。
领域新成果领域新成果4月必逛电子展!AI、人形机器人、低空飞行、汽车、新能源、半导体六大热门新赛道,来NEPCON China 2025一展全看,速登记!
本次股东大会将采取线上和线下相结合的混合形式召开,股东们可选择现场出席或线上参会。
今日光电     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光引未来...欢迎来到今日光电!----追光逐电 光引未来----图1 采用自上而下方法实
‍‍据“龙岩发布”3月5日消息,蓝天LED显示屏产业链生产项目一期装修已完成50%,预计3月底可完工,4月初试投产。加入LED显示行业群,请加VX:hangjia188图源:龙岩发布据介绍,蓝天LED
点击上方蓝字谈思实验室获取更多汽车网络安全资讯01摘要近年来,电子控制单元(ECU)不再局限于简单的便利功能,而是将多种功能整合为一体。因此,ECU 拥有比以往更多的功能和外部接口,各种网络安全问题也
差分运算放大电路,对共模信号得到有效抑制,而只对差分信号进行放大,因而得到广泛的应用。差分电路的电路构型    上图是差分电路。    目标处理电压:是采集处理电压,比如在系统中像母线电压的采集处理,
回顾2024年,碳化硅和氮化镓行业在多个领域取得了显著进步,并经历了重要的变化。展望2025年,行业也将面临新的机遇和挑战。为了更好地解读产业格局,探索未来的前进方向,行家说三代半与行家极光奖联合策划
新思科技与国际半导体产业协会基金会(SEMI 基金会)近日在新思科技总部宣布签署一份谅解备忘录(MoU),携手推动半导体芯片设计领域的人才发展。据预测,到 2030 年,全球半导体行业将需要新增 10
高通又放大招了!3月3日,也就是MWC世界移动通信大会的第一天,高通正式宣布,推出自家的最新5G调制解调器及射频解决方案——高通X85。高通X85对于高通X85的发布,行业早有关注。因为高通的手机So
今日光电     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光引未来...欢迎来到今日光电!----追光逐电 光引未来---- 来源:时光沉淀申明:感
2025年3月11-13日,亚洲激光、光学、光电行业年度盛会的慕尼黑上海光博会将在上海新国际博览中心-3号入口厅N1-N5,E7-E4馆盛大召开。本次瑞淀光学展示方案有:■ MicroOLED/Min
在3月4日北京市政府新闻办公室举行的发布会上,北京经济技术开发区(北京亦庄)发布消息称,将于4月13日举行北京亦庄半程马拉松赛,全球首个人形机器人半程马拉松赛将同期举行。会上表示,人形机器人将与运动员