与其前代无线通信技术相比,5G拥有巨大的潜力,有望在速度、延迟、带宽和质量方面实现显著的改进。本文探讨了毫米波频率带来的一些技术挑战,以及这些挑战对精确、可重复的测量造成的困难。本文还给出了一些策略建议,利用不同的信号路径设置来提高信号分析仪的测量精度。

与其前代无线通信技术相比,5G拥有巨大的潜力有望实现显著改进,尤其是在速度、延迟、带宽和质量方面。其主要的进步均来自对毫米波 (mmWave) 频谱中5G FR2的充分利用。

毫米波频谱对无线通信极具吸引力,因为这些频段的利用率还相对较低,这意味着有足够的带宽空间可供开发。相比其它无线通信信号,毫米波传输信号波长较短,因此非常适合在拥挤的城市地区进行高速传输,因为这些区域的设备密度都很高。

然而,毫米波在5G通信方面的优势却因一些技术难点而大打折扣。首先,毫米波不能传播得很远。毫米波信号很容易被大气吸收,并且无法穿透树木、建筑物墙壁和其他基础设施。利用空中更新 (OTA) 测试设备和相应方法精确测量毫米波设备的性能也很困难。5G通信另一个极具吸引力的特性,毫米波的宽带宽,还会降低信噪比 (SNR),因为其信号能量会扩散至整个带宽。最后,毫米波采用高阶调制方案来提升频谱效率,这反过来又要求改进误差矢量幅度(EVM)的性能。

1信号分析仪功能框图

随着信号强度的降低,用于测量它的测试系统噪声也会降低SNR,从而对最终结果产生影响。因此,我们通常采用信号分析仪来应对多种类型的测试应用,包括高功率和低功率模式、窄带和宽带信号模式、频谱或矢量模式。然而,这种多功能性将许多可能的组件引入了信号路径,如低噪声放大器 (LNA)、前置放大器、衰减器、预选滤波器等。应用或调整其中一些组件可以提高不同测试场景中的测量精度。

本文探讨了毫米波频率带来的一些技术挑战,以及这些挑战对进行精确、可重复的测量造成的困难。本文还给出了一些策略建议,通过利用不同的信号路径设置来提高信号分析仪的测量精度。

路径损耗

路径损耗过大是5G毫米波通信最令人头疼和常被诟病的缺点之一。被测设备 (DUT) 和测量设备之间的路径损耗会降低SNR,导致无法对EVM、相邻信道功率和杂散发射等指标进行精确测量。

让事情更复杂的是,组件和天线阵列的小尺寸排除了放置探头进行测试的可能性,因此必须采用OTA(或辐射)测试。考虑到毫米波传输过多的信号路径损耗,OTA测试需要对测试装置周围的辐射环境进行控制和校准。

抵消信号路径损耗需要灵活的信号分析仪硬件和软件,以便为特定信号和测量创建最佳的解决方案。例如,信号分析仪可以在较高功率电平下应用衰减器,或在较低功率电平下应用前置放大器,以测量各种输入信号。信号分析仪能够提供多条RF信号路径以降低噪声、提高灵敏度并减少信号路径损耗。

测量低电平信号(默认信号路径)

默认情况下,信号分析仪的标准信号路径为:输入信号通过射频衰减器、前置放大器和预选器,最后到达混频器。这种信号路径非常适合测量带宽小于45 MHz的低电平信号。

分析宽带矢量信号(微波预选器旁路路径)

毫米波宽带信号的测量尤其具有挑战性。在增加RF分析带宽以分析宽带矢量信号时,绕过信号分析仪的预选器是一个不错的选择,这样宽带信号可以不受阻碍地通过RF链。绕过预选器不仅可以实现宽带分析,而且还可以消除幅度漂移和预选器的通带纹波,进一步提高测量的整体精度。

2微波预选器旁路

改善调制分析(低噪声信号路径)

低噪声信号路径非常适合进行EVM测量,以及其他在更高功率电平下测试发射机调制质量的测量。由于放大器的增益、频率响应和插入损耗会在较高频率下复合,绕过前置放大器及其路径中的有损开关可以实现最佳的RF信号路径。这条路径减少了路径损耗以及前置放大器和开关产生的频率响应和噪声。在宽带EVM测量中选择这种信号路径,可以实现更高频率下的测量,同时提高测量灵敏度和信号保真度。

宽带调制分析(全旁路信号路径)

全旁路信号路径可降低路径损耗、提高信号保真度并提高测量灵敏度。与默认信号路径相比,全旁路信号路径最多可将毫米波频率的损耗降低10 dB。

全旁路信号路径是低噪声信号路径和微波预选器旁路路径的结合,它避开了低频段开关电路和微波预选器中的多个开关。不过,尽管采用全旁路路径的优势很明显,但它也有一些缺点,比如可能产生带内成像,或降低测试低功率信号时的SNR。不过,通过添加一个带通滤波器来消除特定频带中的图像可以将EVM结果提高1到2 dB。在测试低功率信号时,外部前置放大器则可以提高SNR。

其他考量

影响5G毫米波测量精度的另一个关键因素是输入混频器的电平。信号分析仪的输入混频器电平设置可以实现失真性能和噪声灵敏度之间的平衡。如上所述,由于宽带噪声和过多的路径损耗,5G毫米波信号中的SNR 会降低,从而导致EVM和相邻信道功率比测量结果不佳,无法表现DUT的实际性能。

信号分析仪的输入混频器是另一种帮助应对5G毫米波频率测量挑战的工具。最佳的混频器电平设置取决于测量硬件、输入信号特性和规格测试要求。也可以将外部LNA应用到信号分析仪的前端,以优化混频器的输入电平。一些新型信号分析仪(例如是德科技的N9042B UXA X系列信号分析仪)在信号路径中包含了LNA以及前置放大器,用户无需外部组件即可获得利用LNA优化混频器输入电平的好处。

为了获得最佳EVM测量结果,信号分析仪的中频 (IF) 噪声必须足够低,以免进一步降低SNR。数字化仪的输入信号必须足够高,但又不能太高,以免数字化仪过载。最佳的平衡就如微妙的舞蹈,需要结合RF衰减器、前置放大器和基于信号峰值电平的IF增益值来决定。而采用新型信号分析仪,用户只需按一个按钮即可优化这些硬件设置,提高SNR,同时避免数字化仪过载。不过,为了最优化测量结果,通常还需要手动调整IF增益和 RF衰减器等设置以获得最佳配置。

信号路径中的组件

实现精确的5G毫米波测量还需要考虑另一个关键因素,即在信号分析仪和DUT之间的路径上所有组件可能产生的影响。信号路径中的组件会降低信号分析仪的整体测量精度。

3所有的测试网络元素都需要纳入考量

随着带宽变得更宽并且频率提高到毫米波频谱中,测量精度变得更加重要。在容错裕度变小的条件下,工程师们需要找出方法来消除频率响应误差。频率响应误差常发生在不同频率之下,并影响相位和幅度响应。信号分析仪通常会提供内部校准程序来校正其频率响应。

由于频率响应误差,信号分析仪和DUT之间信号路径中的电缆、连接器、开关和夹具都会降低测量的精度。使用不同的幅度校正配置和复杂的校正将有助于消除频率响应,从而更准确地体现DUT的性能。

信号分析仪能够同时配置幅度校正和复杂的校正,以修正频率响应(尽管还需要高性能信号发生器或矢量网络分析仪来校准测试网络)。进行幅度校正的有效方法是使用信号发生器并结合功率计和传感器来测量幅度,然后将校正值输入信号分析仪。专为信号分析仪接收机测量系统而设计的新型接收机校准仪(例如是德科技的U9361 RCal)提供了一种传输标准,可以改善绝对幅度并实现复杂的幅度与相位校正。

4频率扩展器连接到接收校准

毫米波频段实现5G精确测量

5G的前景(尤其是5G毫米波FR2频段)毋庸置疑,它实现了速度、带宽和性能的阶梯式提升,并将最终带来全新的用例和业务模型。但毫米波频率应用也面临一些障碍,尤其是在路径损耗方面,这使得进行精确、可重复的测量变得极具挑战性。了解并利用信号分析仪上的各种射频信号路径选择,这将帮助您攻克测量5G毫米波时面临的挑战。

(参考原文:Using Different Signal Paths to Make Accurate 5G mmWave Measurements

本文为《电子工程专辑》2021年11月刊杂志文章,版权所有,禁止转载。点击申请免费杂志订阅 

责编:Luffy Liu

本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
阅读全文,请先
您可能感兴趣
这不仅验证了国产自研高压抗辐射SiC功率器件的空间适应性及其在航天电源中的应用,还对SiC功率器件综合辐射效应进行了深入研究。
即使在最佳设计中,噪声和干扰也会悄然降低信噪比、掩盖所需信号并影响测量精度和可重复性。示波器和数字化仪等数字化仪器集成了多种功能,用于表征、测量和减少噪声对测量的影响。
我国在量子精密测量领域取得了重大突破,由南方电网公司牵头研发的全球首套±800kV特高压直流量子电流传感器顺利通过了新产品技术鉴定,我国在量子技术应用方面迈出了重要一步......
此次制裁不仅涉及传统的军事和国防领域,还扩展到了高科技产业。BIS指出,上述实体清单被认为与中国高超音速飞行器、专有软件的开发、设计和建模有关……
利扬芯片拟收购李玲、李瑞麟、封晓涛、贾艳雷、孙絮 研及李亮合计持有的国芯微 100%股权。最终收购价格需在完成尽职调查及审计、 评估程序后经协商确定,并在正式的转让协议中明确......
光电探测器的性能因材料不同、结构不同、制备工艺及应用场景的不同而存在较大的差异。性能指标之间往往存在制约,如暗电流与输出电流、灵敏度与响应度、可靠性与灵敏度等需要权衡。对于性能表征也是如此,例如高响应度与高精度电流表征无法同时进行。
TEL宣布自2025年3月1日起,现任TEL中国区地区总部——东电电子(上海)有限公司高级执行副总经理赤池昌二正式升任为集团副总裁,同时兼任东电电子(上海)有限公司总裁和东电光电半导体设备(昆山)有限公司总裁。
预计在2025年,以下七大关键趋势将塑造物联网的格局。
领域新成果领域新成果4月必逛电子展!AI、人形机器人、低空飞行、汽车、新能源、半导体六大热门新赛道,来NEPCON China 2025一展全看,速登记!
本次股东大会将采取线上和线下相结合的混合形式召开,股东们可选择现场出席或线上参会。
Mar. 5, 2025 产业洞察根据TrendForce集邦咨询最新研究,TSMC(台积电)近日宣布提高在美国的先进半导体制造投资,总金额达1650亿美元,若新增的三座厂区扩产进度顺利,预计最快20
回顾2024年,碳化硅和氮化镓行业在多个领域取得了显著进步,并经历了重要的变化。展望2025年,行业也将面临新的机遇和挑战。为了更好地解读产业格局,探索未来的前进方向,行家说三代半与行家极光奖联合策划
今日光电     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光引未来...欢迎来到今日光电!----追光逐电 光引未来----编者荐语特征提取是计算机
差分运算放大电路,对共模信号得到有效抑制,而只对差分信号进行放大,因而得到广泛的应用。差分电路的电路构型    上图是差分电路。    目标处理电压:是采集处理电压,比如在系统中像母线电压的采集处理,
从上表可知,2024年前三季度全球40强PCB企业总营收约416.7亿美元,同比增长7.6%。其中,营收排名第一位的是臻鼎科技(36.05亿美元),排名第2~5位的分别是欣兴电子(26.85亿美元)、
插播:历时数月深度调研,9大系统性章节、超百组核心数据,行家说储能联合天合光能参编,发布工商业储能产业首份调研级报告,为行业提供从战略决策到产品方向、项目资源的全维参考!点击下方“阅读原文”订阅刚开年
高通又放大招了!3月3日,也就是MWC世界移动通信大会的第一天,高通正式宣布,推出自家的最新5G调制解调器及射频解决方案——高通X85。高通X85对于高通X85的发布,行业早有关注。因为高通的手机So
如果说华为代表了国产手机芯片的最高水平,那么紫光展锐无疑就是国产中低端芯片最大的依持了。3月3日,巴塞罗那MWC世界移动通信大会上,紫光展锐正式发布手机芯片T8300。据了解,T8300采用的是6nm
                                                                                                
在3月4日北京市政府新闻办公室举行的发布会上,北京经济技术开发区(北京亦庄)发布消息称,将于4月13日举行北京亦庄半程马拉松赛,全球首个人形机器人半程马拉松赛将同期举行。会上表示,人形机器人将与运动员