宽禁带碳化硅(SiC)半导体开关速度非常快,以至于在实际电路中,必须降低边沿速率以减少电压过冲和电磁干扰(EMI)。小型的缓冲网络被证明是一种简单且低损耗的解决方案。

在这个宽禁带半导体开关的新时代,器件的类型选择包括SiC MOSFET和GaN高电子迁移率晶体管(HEMT),它们都有自己特性并都声称拥有最佳的性能。但是,这两种都还不是理想的开关,这两种类型的器件都在某些方面有局限性,特别是在栅极驱动要求方面和“第三象限”操作方面。

SiC FET提供了另一种选择

但我们还有另一种选择。 UnitedSiC FET是SiC JFET和低压Si MOSFET的一种级联组合,具有SiC的速度优势,以及SiC最低传导损耗的优点,并且仅需要一个简单的栅极驱动和一个快速、低功耗的体二极管用于第三象限传导(图1)。图1:SiC FET — SiC JFET和Si MOSFET的级联组合

SiC FET的速度非常快,其边沿速率为50V/ns甚至更高,这对于最大程度降低开关损耗非常有用,但所产生的di/dt比值可达数安培/纳秒。通过封装和电路电感,这会产生极高的电压过冲并导致随后的电压振铃现象。在这种电流变化速率下,可简单分析得出,即使几十纳亨(nH)也可能产生数百伏的过冲(从公式E = –L(di/dt)得出)。对于快速切换的宽禁带器件,将这种杂散电感降至最低至关重要。但是,这在实际的布线中却很难实现,因为布线要求必须在高压组件之间保留安全距离,并且为了获得更好的热性能需要使用更大的半导体封装。

过冲有超过器件额定电压的风险,并给元器件的长期使用增添了压力,但是快速变换的边缘也会引起绝缘击穿,并会产生更多的EMI,导致需要使用更大、更昂贵且损耗更高的滤波器。因此,实际电路通常会故意降低此类快速开关的边沿速率,从而允许使用可能具有更低传导损耗和更小滤波器的低压器件,用来抵消稍高的开关损耗。

缓慢的开关边沿可减少过冲和EMI

有两种常见的减慢开关边沿速率的方法:通过增添栅极电阻和通过在器件的漏极-源极端之间使用一个缓冲器。

增加栅极电阻确实会降低dV/dt,从而减少过冲,但是对漏极电压随后出现的振铃现象几乎没有影响。栅极电阻的减慢效果取决于器件的总栅极电荷,而电荷又取决于诸如栅极-源极电容和“米勒”效应等的参数。当器件切换时,这些参数会表现为可变的栅极-漏极电容。导通和关断的延迟可以分别通过使用两个带控向二极管的栅极电阻来控制,但是,想要在所有工作条件下都达到这种总体优化的效果是有难度的。此外,增加栅极电阻会给栅极驱动波形带来延迟,这在高频应用中会是个大问题。

相反,简单的Rs-Cs缓冲器可通过增加开关的漏极电容来减慢dV/dt。它还有一个额外的效果:由于一些电流需要用来给Cs充电,因此器件关断时电压上升和电流下降之间的重叠会减少,从而降低了器件的开关损耗。开关导通时,必须限制电容器的放电电流,因此要串联一个电阻,当器件关断时,该电阻还可以抑制振铃。缺点是电阻器在此过程中不可避免地会消耗一些功率,并且半导体开关效率的增益会在一定程度上会被抵消。

缓冲器可以成为更低损耗的解决方案

SiC FET技术开发商UnitedSiC的研究表明,与单单增加栅极电阻相比,仅需一个非常小的缓冲电容和一个相应的低功率电阻即可实现对dV/dt、过冲和振铃更有效的控制。当小型缓冲器件与较低的Rg结合使用时,会产生更低的总损耗和更清晰的波形。这种方法对UnitedSiC的FET和传统的SiC MOSFET都适用。图2比较了一个有200 pF/10Ω缓冲器的器件(左)和一个添加了5Ω栅极电阻的器件(右)的振铃现象和dV/dt。虽然两种方法在关断时都差不多调谐到了相同的 峰值,但有缓冲器的版本明显有着更短的延迟时间和更好的振铃阻尼。

2:使用RC器件缓冲可降低dV/dtID/重叠以及SiC MOSFET的振铃。(ID = 50 AV = 800 VTO247-4L;左:SiC MOSFET的关断波形,Rg.off = 0ΩRs = 10ΩCs = 200 pF;右:SiC MOSFET的关断波形,Rg.off = 5Ω,无器件缓冲)

总损耗包含传导损耗、上升和下降沿上的开关损耗,以及缓冲电阻中的任何功率消耗。通过与SiC MOSFET器件进行比较,在UnitedSiC上进行的测试表明,在高漏极电流下,当峰值电压调谐相当时,采用缓冲方案的关断能量损耗(EOFF)仅为单单采用栅极电阻时的50%。同时导通能耗(EON)略高(仅约10%),对于一个以40 kHz和48 A / 800 V开关的40mΩ器件来说,一个周期约275 µJ(或11 W)的缓冲器对其总体上的影响是正面的。这种比较在图3中以蓝色和黄色的曲线表示。黑色曲线代表了一个有缓冲器且优化了栅极导通和关断电阻的40mΩ UnitedSiC SiC FET器件的性能,与测量的SiC MOSFET相比,SiC FET的输出电容更低,本征速度更快,因此其损耗得到了进一步降低。

图3:比较SiC开关有无缓冲器时的总开关损耗

缓冲电容器在每个开关周期里都充分地充电和放电,但要注意的是,这些存储的能量并没有全部消耗在电阻器上。实际上,大多数CV2能量是在器件开启时消耗的。在引用示例中,在40 kHz,ID为 40 A,VDS为 800 V以及有着一个220-pF /10-Ω缓冲器的情况下,总功率消耗约为5 W,但电阻仅占0.8W,其余的都在开关中消耗了。这样就可以使用额定电压合适的小尺寸电阻器(即使是表面贴装型也可以)。

UnitedSiC的器件具有D2pk7L和DFN8×8以及TO247-4L封装形式,可实现最佳的热性能。 TO247-4L封装的部件与源极之间有开尔文连接,可有效消除源极电感的影响,减少了开关损耗,并在高漏极di / dt时生成更干净的栅极波形。

结论

器件缓冲似乎是处理开关过冲、振铃和损耗的一种“野蛮”解决方案,而这对于诸如IGBT之类较老的技术来说确实如此,因为它们的“尾电流”长,需要大型且有损的缓冲网络。但是,宽禁带器件,尤其是SiC FET,可以将该技术用为栅极电阻调谐的优良替代方案,以提供较低的总损耗,并且可以采用紧凑、廉价的元器件来实现。

(参考原文:Minimizing EMI and Switching Loss in SiC FETs)

责编:Amy Guan

本文为《电子工程专辑》2021年6月刊杂志文章,版权所有,禁止转载。点击申请免费杂志订阅 

本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
您可能感兴趣
安森美半导体此次裁员决策并非毫无预兆,主要原因是市场需求的下降和公司收入的减少。
从运算放大器、逻辑功能芯片到高端处理器等基本抗辐射器件已经存在多年,并提供多种辐射耐受等级。尽管抗辐射是必要条件之一,仅靠器件本身并不足以保证整个电路的抗辐射性能。
此次收购符合南芯科技的长期战略规划,通过整合昇生微在嵌入式芯片设计上的技术专长和研发团队,南芯科技将强化其在硬件、IP、算法及软件等方面的技术优势……
物理世界对智能的需求正在推动边缘设备支持复杂计算,如人工智能、机器学习、数字信号处理和数据分析等。这增加了能源需求,而这些设备通常处于能源匮乏状态。因此,迫切需要从根本上重新考虑制造这些设备的计算硬件以提高能源效率。
英诺赛科此次上市标志着作为氮化镓功率半导体领域的龙头企业正式进入资本市场,并成为港股“第三代半导体”第一股。英诺赛科的开盘价为31港元,较发行价上涨了0.5%,但随后股价跌破了发行价,市值约为270亿港元......
自1984年,意法半导体首次进入中国,成为首批在中国开展业务的半导体公司。意法半导体CEO Jean-Marc Chery日前表示,中国市场是不可或缺的,是电动汽车规模最大、最具创新性的市场,与中国本地的制造工厂达成合作,具有至关重要的作用。他还表示,意法半导体正在采用在中国市场学到的最佳实践和技术,并将其应用于西方市场,“传教士的故事结束了”。
TEL宣布自2025年3月1日起,现任TEL中国区地区总部——东电电子(上海)有限公司高级执行副总经理赤池昌二正式升任为集团副总裁,同时兼任东电电子(上海)有限公司总裁和东电光电半导体设备(昆山)有限公司总裁。
预计在2025年,以下七大关键趋势将塑造物联网的格局。
领域新成果领域新成果4月必逛电子展!AI、人形机器人、低空飞行、汽车、新能源、半导体六大热门新赛道,来NEPCON China 2025一展全看,速登记!
本次股东大会将采取线上和线下相结合的混合形式召开,股东们可选择现场出席或线上参会。
小米宣布全球首发光学预研技术——小米模块光学系统,同时发布官方宣传视频。简单来说,该系统是一个磁吸式可拆卸镜头,采用定制M4/3传感器+全非球面镜组,带来完整一亿像素,等效35mm焦段,配备f/1.4
千万级中标项目5个,百万级中标项目12个。文|新战略根据公开信息,新战略移动机器人产业研究所不完全统计,2025年2月,国内发布35项中标公告,披露总金额超15527.01万元。(由新战略移动机器人全
本文来源:智能通信定位圈最新消息显示,全球领先的厘米级定位导航企业苏州天硕导航科技有限公司(简称“天硕导航”)近期宣布获得数千万元级的A轮融资。本轮融资目的是扩展业务、产品开发和团队建设,深创投作为本
Mar. 5, 2025 产业洞察根据TrendForce集邦咨询最新研究,TSMC(台积电)近日宣布提高在美国的先进半导体制造投资,总金额达1650亿美元,若新增的三座厂区扩产进度顺利,预计最快20
今日光电     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光引未来...欢迎来到今日光电!----追光逐电 光引未来----编者荐语特征提取是计算机
引言 嘿,各位电动汽车的爱好者们!咱们今儿个就来聊聊电动汽车里那些“看不见,摸不着”,但又至关重要的零部件。要说电动汽车这玩意儿,那可真是科技含量满满,各种高精尖的技术都往里堆。但要让这些
先问大家一个问题:你有多久没看电视了?对老局来说,最近这几年除了春晚和国庆阅兵,其他情况下,基本已经不会看电视了。当然了,连着PS5打游戏那是另外一回事。不过,虽然我们不怎么看电视了,但电视的市场却并
新思科技与国际半导体产业协会基金会(SEMI 基金会)近日在新思科技总部宣布签署一份谅解备忘录(MoU),携手推动半导体芯片设计领域的人才发展。据预测,到 2030 年,全球半导体行业将需要新增 10
插播:历时数月深度调研,9大系统性章节、超百组核心数据,行家说储能联合天合光能参编,发布工商业储能产业首份调研级报告,为行业提供从战略决策到产品方向、项目资源的全维参考!点击下方“阅读原文”订阅刚开年
 点击上方蓝字➞右上「· · ·」设为星标➞更新不错过★2025 年 3 月 12 日至 14 日  连续 3 晚 19:00 - 20:30德州仪器电力全开 为您带来 “高效 DC-DC 转换器的设