自大数据问世以来,用于超大规模数据中心、人工智能(AI)和网络应用的片上系统(SoC)设计人员正面临着不断演进的挑战。由于工作量的需求以及需要更快地移动数据,具有先进功能的此类SoC变得益发复杂,且达到了最大掩模版(reticle)尺寸。本文介绍了die-to-die连接的几种不同用例,以及在寻找用于die-to-die链接的高速PHY IP时要考虑的基本注意事项。

自大数据问世以来,用于超大规模数据中心、人工智能(AI)和网络应用的片上系统(SoC)设计人员正面临着不断演进的挑战。由于工作量的需求以及需要更快地移动数据,具有先进功能的此类SoC变得益发复杂,且达到了最大掩模版(reticle)尺寸。因此,设计人员将SoC划分为多芯片模块(MCM)封装的较小模块。这些分离的芯片需要超短(ultra-short)和极短(extra-short)距离链接,以实现具有高数据速率的die间连接。除带宽外,裸片到裸片(die-to-die)的连接还必须确保是极低延迟和极低功耗的可靠链接。本文介绍了die-to-die连接的几种不同用例,以及在寻找用于die-to-die链接的高速PHY IP时要考虑的基本注意事项。

Die-to-die连接用例

MCM中die-to-die连接的新用例正在出现,其中一些包括:

1.高性能计算和服务器SoC接近最大掩模版尺寸

2. 以太网交换机和网络SoC超过最大掩模版尺寸

3.可扩展复杂算法的具有分布式SRAM的人工智能(AI)SoC

高性能计算和服务器SoC的面积正变得越来越大,达到550 mm2至800 mm2,从而降低了SoC的良率并增加了每个Die的成本。优化SoC良率的更好方法是将SoC分为两个或多个相等的同质die(如图1所示),并使用 die间PHY IP连接 die。在这种用例中,关键的要求是极低延迟和零误码率,因为更小的多个 die的表述和表现必须像单一die一样。

图1:需要die-to-die连接的高性能计算和服务器SoC示例

以太网交换机SoC是数据中心的核心,必须以快于12Tbps到25Tbps的速率传送数据,这需要256个通道的100G SerDes接口,因此无法将这种SoC装入800 mm2大小的掩模版。为克服这一挑战,设计人员将SoC拆分为这样一种配置:其中,内核die被I/O die包围,如图2所示。然后,使用Die-to-die收发器将内核die连接到I/O die。

在这种用例中,仅当die-to-die收发器的带宽密度远优于I/O die中的长距离SerDes时, die拆分才有效用。因此,关键参数是每毫米的die边缘(die-edge)带宽密度。

图2:需要die-to-die连接的以太网交换机SoC示例

在一款AI SoC中,每个die都包含智能处理单元(IPU)和位于每个IPU附近的分布式SRAM。在这种用例下,一个die中的IPU可能需要依赖于极低延迟的短距离die-to-die链接来访问另一die中SRAM内的数据。

图3:需要die-to-die连接的AI SoC示例

在所有这些用例中,用于die-to-die连接的理想高速PHY可以简化MCM封装要求。由于每个通道的吞吐量高达112 Gbps,因此在通道数量相对有限的情况下可实现非常高的总吞吐量。在这种情况下,封装走线间距和堆叠可能比较保守(L /S通常为10u /10u)。在这些用例中,也可以使用传统、低成本、基于有机基材料的封装。

Die-to-die连接的高速PHY IP要求

光互联论坛(OIF)正在定义电气I/O标准,以在超短距离(USR)和极短距离(XSR)链路上以高达112Gbps的数据速率传输数据。这些规范定义了die-to-die的链接(即:封装内)以及die-to-die到与该SoC位于同一封装内的光学引擎的链接,从而显着降低了功耗和复杂性,并实现了极高的吞吐量密度。

在研究用于MCM中的die-to-die连接的高速PHY IP方案时,SoC设计人员必须考虑几个基本功能,包括:以千兆位或兆兆位每秒(Gbps或Tbps)度量的数据吞吐量或带宽;以每比特皮焦耳(pJ/bit)为单位检视的能源效率;以纳秒(ns)为单位测量的延迟;以毫米(mm)为单位表度的最远链接距离;以及误码率(无单位)。

数据吞吐量或带宽

为了实现与其它收发器的互操作性, die-to-die PHY IP必须确保符合USR和XSR链路的相关OIF电气规范。支持脉冲幅度调制(PAM-4)和不归零(NRZ)信令对于满足两种链路的要求并实现每通道最大112Gbps带宽至关重要。这种信令支持非常高的带宽效率,因为在MCM中的die之间传输的数据量非常大,因此带宽效率是至关重要的要求。数据移动速率通常在每秒兆兆位水平,这就限制了分配给USR和XSR链路的芯片边缘(前端/ beach front)的大小。

但是,同样重要的是支持多种数据速率。通常,期望在假设其数据速率与内部建构数据速率相匹适或支持chip-tp-chip协议所需的所有数据速率的条件下,实现die-to-die的链接。例如,即使在诸如32Gbps这样的高速下,PCI Express也必须支持低至2.5Gbps的数据速率以进行协议初始化。

链接距离

在die-to-die的实现中,大量数据必须流经桥接die间间隙的短数据路径。为保证将die放置在封装基板上时的最大灵活性,PHY IP必须支持TX和RX之间50mm的最长距离。

能效

能效成为重要的因素,尤其是在将SoC功能划分为多个同质die的用例中。在这种情况下,设计人员寻求在不影响SoC总功耗预算的情况下在die之间推送大量数据的方法。理想的die-to-die PHY IP的能效应好于每比特1皮焦耳(1pJ/bit)或等效的1mW/Gbps。

延迟和误码率

为了使die之间的连接“透明”,延迟必须极其低,同时必须优化误码率(BER)。由于采用了简化的架构, die-to-die PHY IP本身可实现超低延迟,而BER优于10e-15。根据链路距离,可能需采用前向纠错(FEC)机制保护互连,以实现如此低的BER。 FEC延迟会影响方案的整体延迟。

Macro 摆放

除了这些与性能相关的参数外,PHY IP还必须支持在die所有位向的放置,以实现die以及MCM的高效平面规划。宏(macro)的优化布局可实现低耦合的高效die间布线、优化的die和MCM大小、并最终提高能效。

选择die-to-die的PHY IP时,还有许多其它考虑因素,包括整合进可测试性功能,以便能够在封装之前对die进行生产测试,但前述几点是最重要的。

结论

更高的数据速率和更复杂的功能正在增加用于超大规模数据中心、AI和网络应用的SoC的大小。随着SoC尺寸接近掩模版尺寸,设计人员被迫将SoC分成较小的die,这些die封装在多芯片模块(MCM)中,以实现高良率并降低总体成本。然后,MCM中的较小die通过die-to-die互连进行链接,这些互连具有极低功耗和 而且每个die边缘都具有高带宽。在高性能计算和AI应用中,大的SoC被分为两或多个同质die;在网络应用中,I/O和互连内核被分为单独的die。这种SoC中, die-to-die的互连必须不影响整体系统性能,并且要求低延迟、低功耗和高吞吐量。这些要求推动了对诸如Synopsys的DesignWare®USR/XSR PHY IP这样的高吞吐量die-to-die PHY的需求,该IP支持MCM设计中的die-to-die链接,每通道的数据速率高达112Gbps,且能效极高。DesignWare USR/XSR PHY IP符合用于USR和XSR链接的OIF CEI-112G和CEI-56G标准。

点击这里了解更多新思科技的高速串行解串器PHY IP

作者:Manuel Mota,Synopsys高级产品市场经理

相关文章推荐:

运用可扩展多核处理器满足嵌入式应用日益增长的性能需求

您可能感兴趣
全球前十大高产机构中,9家为中国机构(如中国科学院、清华大学等)。其中,中国科学院以 2018-2023 年期间发布的 14,387 篇文章位居榜首。
这一新指导政策不仅反映了中国在芯片产业中减少对外依赖的战略意图,也体现了RISC-V架构在中国芯片产业中的重要地位和发展潜力。
这一成果不仅将芯片上的时间调控速度提升了 100 倍,时钟频率突破100GHz,还为未来智能计算、6G 通信、空天遥感等一系列现实应用的性能提升提供了强大支持。
此次风波始于2月28日,部分自媒体在小红书、微信公众号等平台发布《芯片界最大投资机构之一北京办公室关门》等文章,声称中芯聚源“北京办公室已关闭”、“上海团队人心涣散”、“仅剩最后一期基金”等……
此次调整被视为芯华章迈向规模化发展的关键一步,旨在应对半导体EDA市场日益激烈的竞争与技术挑战。
随着先进芯片设计格局的迅速演变,新的验证和确认方法变得至关重要。众多前沿设计由系统公司在先进的工艺节点下完成,具有大量的逻辑门,并依赖于复杂的片上网络、SRAM池以及精密的电源、时钟和测试架构。
TEL宣布自2025年3月1日起,现任TEL中国区地区总部——东电电子(上海)有限公司高级执行副总经理赤池昌二正式升任为集团副总裁,同时兼任东电电子(上海)有限公司总裁和东电光电半导体设备(昆山)有限公司总裁。
预计在2025年,以下七大关键趋势将塑造物联网的格局。
领域新成果领域新成果4月必逛电子展!AI、人形机器人、低空飞行、汽车、新能源、半导体六大热门新赛道,来NEPCON China 2025一展全看,速登记!
本次股东大会将采取线上和线下相结合的混合形式召开,股东们可选择现场出席或线上参会。
引言 嘿,各位电动汽车的爱好者们!咱们今儿个就来聊聊电动汽车里那些“看不见,摸不着”,但又至关重要的零部件。要说电动汽车这玩意儿,那可真是科技含量满满,各种高精尖的技术都往里堆。但要让这些
国际电子商情讯,昨日(3月3日)晚间,TCL科技发布公告称,拟以115.62亿元收购深圳市华星光电半导体显示技术有限公司(以下简称深圳华星半导体)21.5311%股权。A股市场又一起百亿并购2025年
差分运算放大电路,对共模信号得到有效抑制,而只对差分信号进行放大,因而得到广泛的应用。差分电路的电路构型    上图是差分电路。    目标处理电压:是采集处理电压,比如在系统中像母线电压的采集处理,
点击蓝字 关注我们SUBSCRIBE to USXoMotion许多脊髓受伤的人都有惊心动魄的灾难经历:潜水事故、车祸、建筑工地灾难等。但Chloë Angus的故事却截然不同。2015年的一个晚上,
新品EVAL-2ED3146MC12L–带辅助电源的6.5A双通道隔离栅极驱动器评估板EVAL-2ED3146MC12L评估板用于评估功率半桥电路中的2ED3146MC12L 6.5A隔离栅极驱动器I
                                                                                                
  合景智慧建设 (广东)有限公司子品牌合洁科技电子净化工程公司(以下简称“合洁科技”)作为洁净工程领域的领军企业,凭借其卓越的技术实力、创新的设计理念和高效的施工能力,在多个行业
文|金融街老李奇瑞终于正式向港交所递交上市申请了。其实,支持奇瑞汽车实现IPO,此前就已经被安徽省列在了汽车产业2025年重点工作的第38条,但正如奇瑞汽车一贯的低调作风,此次赴香港上市,奇瑞在资本市
    内容概要:目前,全球半导体、光电等电子信息产业在世界范围内转移,东亚、东南亚等地区已成为世界电子信息行业的主要市场和发展重心;同时由于我国医药卫生、半导
Mar. 5, 2025 产业洞察根据TrendForce集邦咨询最新《5G时代下的突破机会:论全球电信商FWA布局》报告指出,随着美国电信商T-Mobile、Verizon转移营运重心至拓展建置成本