作为一名学生和工程师,经过多年的深入研究,您可能会忘记电子电路理论中的一些基本概念,例如叠加、戴维南等效、诺顿等效和网孔分析等,而主要关注一种技术,即节点电压分析。此时正是致命的错误观念渗入我们思想的时候,接地节点经常被误以为是所有电荷的物理入地点。

在以往的电路理论学习中,您可能了解了许多分析电路的技术。节点电压分析和网孔分析就是其中两种著名的类似技术。在节点电压分析法中,首先需要选择一个节点,把它作为参考节点。这个节点通常被假设具有绝对零电位,我们通常称其为“接地”节点。

只要不关心电路与其它对象之间的电压关系,一般不会发现这种假设的害处。将多个子电路共用的节点作为接地节点,通常是从数学上简化电路分析的极佳选择。

当我们学习电子电路专业课程时,通常会忘记许多电路分析技术,例如叠加、戴维南等效、诺顿等效和网孔分析等,而主要关注一种技术,即节点电压分析(图1)。

illusion19120901.png图1:节点电压分析通常简化了电子电路的分析。上图左侧是节点电压分析示例,右侧是同一电路的网孔分析示例。

作为一名学生和工程师,经过多年的深入研究,您可能会忘记电子电路理论中的一些基本概念,此时正是致命的错误观念渗入我们思想的时候。

常见误解

接地节点经常被误以为是所有电荷的物理入地点。这当然不对。接地节点只是我们个人选择的节点。除了通常是许多子电路的公共节点以外,它没什么特殊之处。而作为一个公共节点不会增加任何特殊的物理属性。接地节点上唯一存储的电荷是一端接地的电容器的负极板电荷。所有其它电荷都在电路中循环,并且永不停歇(图2)。请记住,所有电流都在一个回路中流动,电荷会返回其源极。

 

illusion19120902.png图2:电流电荷在回路中循环,接地节点上唯一存储的电荷(–Q)是接地电容器上的电荷。

Magazine191218.jpg

接地节点是避免噪声的安全港。这也不对,大多数不同的噪声电流都会通过接地节点(图3)。但是,仅对设计良好的接地轨而言,导电轨的阻抗可忽略不计,此时跨轨的噪声电位差几乎为零。

illusion19120903.png图3:不同的信号电流和不同的噪声电流通过接地节点。接地轨的低阻抗是确保导电轨中任何两个物理点之间的电位差可以忽略的唯一保证,至少在直流电路分析中如此。

人们普遍认为,将两个相互影响的域的接地垫隔离,可以保护安静域免受噪声域的影响。这可能是RF工程师在不知情的情况下所犯的最严重错误之一。在多种情况下,接地垫的分离可能会导致从噪声域输出到安静域输入的严重噪声耦合。您可能会发现这有悖常理,但是当你使用绑定线绘制完整的电路直至PCB层时,这一点会变得清晰,如图4所示。当所有MOS体连接到专用接地垫时,也会产生类似的影响。

illusion19120904.png图4:当上图左侧接地垫分离时,从一个域到另一个域的传输信号会变得噪声很大。其分析步骤以紫色圆圈标记。另一方面,如右侧图所示,合并域后,信号得以安全地传输。但是,如果PSRR较差,安静域可能会受影响。

在考虑功耗的数字电路设计中,浮动输出不仅与断开接地路径有关,而且还与断开电源路径有关(图5)。物理设计偏好通常倾向于切换接地路径。这是因为在相同的导通电阻下,将使用面积比PMOS器件小的NMOS器件。

 

illusion19120905.png图5:当电源或地线关闭时,不可避免地可能导致输出电压不确定。而此不确定的输出电压取决于存储在负载电容器上的最后一个工作输出状态、电源与地之间的OFF电阻比,以及不同连接点的漏电流。

接地轨和电源轨似乎与时序收敛无关。时序收敛与不同的信元延迟和不同的信号边沿有关。 当接地轨具有相对较高的阻抗时,在电源轨和接地轨之间会产生相当大的IR压降,这会降低有效电源电压,从而增加CMOS单元的延迟。而且,即使电源轨上的平均IR压降微不足道,开关噪声电流也会在接地轨上产生明显的瞬态噪声电压。因此,如图6所示,到达距信号源较远的门的信号沿可以及时有效地“移动”[1]。时移取决于瞬态噪声的大小和极性。对于高上升/下降时间信号,这种影响变得更加明显。

 

illusion19120906.png图6:根据紫色圆圈所示的分析步骤,瞬态电源/接地电流曲线在接地端会产生相似的电压曲线,这会影响信号沿的有效到达时间。大幅增加本地去耦电容器以吸收交流电流曲线,并降低电源/接地轨的阻抗,可以缓解该问题。

接地垫是否需要分离?

这是一个棘手的问题,需要详细说明。前述内容可能会给人一种印象,即接地垫分离是一种不良的设计实践,尽管在许多芯片中这可能是一种常见的做法。通常,设计具有低电阻和低电感的单个统一接地,要远远优于设计多个接地轨。多个接地轨会造成一些麻烦,比如多个作用域之间复杂的回流电流路径,以及载有高频电流的大面积环路造成的磁耦合。

但是,在某些情况下,接地垫的分离不可避免。例如,假设有一个晶体振荡器和一个带噪声的数字模块,它们共享一个接地垫,如图7所示。数字模块从电源汲取噪声电流,并通过接地轨和绑定线返回。因此,接地线上会出现明显的电压故障。由于该绑定线与晶体振荡器的地线共用,噪声电压故障会加载到晶振内部节点的晶体纯正弦电压上。

 

illusion19120907.png图7:根据紫色圆圈中所示的分析步骤,噪声块会间接在接地线两端产生噪声电压。由于晶体实际上是具有很好截止特性的带通滤波器,因此在振荡过程中,其每个端子上都存在纯正弦电压。但是,晶体振荡器的内部节点会感测到接地线两端的纯电压和噪声电压的叠加。

在需要分离接地垫的情况下,请执行以下操作:
· 尽可能在噪声模块周围放置多个去耦电容器(图8)。这会减少噪声供电电流在芯片外部的传输,从而将模块导电轨及其输出上产生的噪声电压最小化。
· 最小化噪声模块与其它模块块之间的电气交互作用,或仅减小传递的电流。为此,在噪声域中使用具有相对较高输出阻抗的驱动器,在安静域中使用具有高输入阻抗缓冲器的驱动器。

illusion19120908.png图8:噪声模块端的去耦电容会吸收流经电源和地的大部分AC电流成分。最小化从噪声域到敏感域的传输电流,可确保最小化噪声的传输。

接地节点只是一个为电路分析而定义的节点。所有电流仍在回路中传输,并不会在接地节点处截止。

要预测和解决接地相关的问题,只需绘出带所有物理连接的完整电路,而无需定义接地节点,并将不同的电流回路和公共路径可视化。

在决定统一或分离不同域的接地垫之前,仔细了解预期的增益和潜在影响。

图9所示是一个习题。其左侧显示了一个具有有限漏极阻抗的简单NMOS电流源。那么,看到的电源电压源低频交流阻抗是多少?

 

illusion19120909.png图9:接地节点定义是否会影响输入阻抗值?

答案非常简单。物理上保持电路不变,但选择NMOS漏极作为接地节点,而不是NMOS源极,如图9右侧所示,那么阻抗会保持不变吗?千万不要让接地迷惑了您。

 (参考原文: The ground illusion: Don't let it come back to get you , by Mohammed Tawfik AbdelHafez)

责编:Amy Guan

本文为《电子工程专辑》12月刊杂志文章,版权所有,禁止转载。点击申请免费杂志订阅 

也可点击立即下载,下载12月刊完整版。

EETC-1912-Download.JPG

 

 

本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
阅读全文,请先
您可能感兴趣
iPhone 16系列一经发售,除了被拆解分析机构盯上,也因为近期的黎巴嫩寻呼机爆炸事件,被一些造谣者盯上。网上出现了大量“禁止携带苹果手机”的通知,正好多家机构日前对iPhone 16进行了拆解,我们借此文还看看里面有没有引爆装置……
至今,航空通用电子技术已经有超过一个世纪的发展历史,可以说它是eVTOL行业发展的基石,不仅关系到飞行器的性能和安全,也是推动eVTOL技术创新和商业化的关键因素。但毕竟就像油车和电车的区别,eVTOL采用的电驱动力,和传统燃油动力的飞行器有着本质区别,究竟这百年的经验,eVTOL能用到多少?又有哪些部分需要自己去摸索创新?
珠海镓未来科技有限公司(GaNext)CTO兼IEEE Fellow吴毅锋发表了“氮化镓功率器件应用的大跨度拓展——从PD快充到户外储能”的主题演讲。
苹果公司反驳了日前法国对iPhone 12电磁辐射超标的说法,并表示将与法国合作,以证明iPhone 12符合标准。苹果还表示,将向官方提供了内部和第三方实验室测试,以证明产品在合法范围内。中国也有机构对多款iPhone进行了电磁辐射测试,结果是……
科技产品永远不缺天马行空的想象,设计师们脑洞大开,创造了各种既炫酷又实用的高科技电子产品,让我们的生活更加便利和有趣。因此,创新是电子行业经久不衰的长期逻辑根基,而这背后支撑创新的引擎的则是半导体产业的频繁迭代和工艺技术升级。
苹果在近日的发布会上一条堪称“天价”的数据线,引发了网友的热议和吐槽——这是一条黑色的“雷雳4 Pro连接线”,线长1.8米,售价 949元,几乎是一款入门手机的价格。不少普通用户都在不断吐槽智商税,但内行人士认为苹果这跟新品的各方面规格几乎拉满,基本处于金字塔顶尖……
目前,智能终端NFC功能的使用频率越来越高,面对新场景新需求,ITMA多家成员单位一起联合推动iTAP(智能无感接近式协议)标准化项目,预计25年上半年发布1.0标准,通过功能测试、兼容性测试,确保新技术产业应用。
中科院微电子所集成电路制造技术重点实验室刘明院士团队提出了一种基于记忆交叉阵列的符号知识表示解决方案,首次实验演示并验证了忆阻神经-模糊硬件系统在无监督、有监督和迁移学习任务中的应用……
C&K Switches EITS系列直角照明轻触开关提供表面贴装 PIP 端子和标准通孔配置,为电信、数据中心和专业音频/视频设备等广泛应用提供创新的多功能解决方案。
投身国产浪潮向上而行,英韧科技再获“中国芯”认可
今日,长飞先进武汉基地建设再次迎来新进展——项目首批设备搬入仪式于光谷科学岛成功举办,长飞先进总裁陈重国及公司主要领导、嘉宾共同出席见证。对于半导体行业而言,厂房建设一般主要分为四个阶段:设备选型、设
万物互联的时代浪潮中,以OLED为代表的新型显示技术,已成为人机交互、智能联结的重要端口。维信诺作为中国OLED赛道的先行者和引领者,凭借自主创新,实现了我国OLED技术的自立自强,成为中国新型显示产
“ 洞悉AI,未来触手可及。”整理 | 美股研究社在这个快速变化的时代,人工智能技术正以前所未有的速度发展,带来了广泛的机会。《AI日报》致力于挖掘和分析最新的AI概念股公司和市场趋势,为您提供深度的
12月18 日,据报道,JNTC与印度Welspun BAPL就车载盖板玻璃的开发及量产签订了投资引进业务合作备忘录(MOU)。资料显示,JNTC是韩国的一家盖板玻璃厂商。Welspun的总部位于印度
近期,高科视像、新视通、江苏善行智能科技等企业持续扩充COB产能。插播:加入LED显示行业群,请加VX:hangjia188■ 高科视像:MLED新型显示面板生产项目(二期)招标12月18日,山西高科
扫描关注一起学嵌入式,一起学习,一起成长在嵌入式开发软件中查找和消除潜在的错误是一项艰巨的任务。通常需要英勇的努力和昂贵的工具才能从观察到的崩溃,死机或其他计划外的运行时行为追溯到根本原因。在最坏的情
又一地,新型储能机会来了?■ 印度:2032储能增长12倍,超60GW据印度国家银行SBI报告,印度准备大幅提升能源存储容量,预计到2032财年将增长12 倍,超60GW左右。这也将超过可再生能源本身
在上海嘉定叶城路1688号的极越办公楼里,最显眼的位置上,写着一句话:“中国智能汽车史上,必将拥有每个极越人的名字。”本以为这句话是公司的企业愿景,未曾想这原来是命运的嘲弄。毕竟,极越用一种极其荒唐的
今天上午,联发科宣布新一代天玑芯片即将震撼登场,新品会在12月23日15点正式发布。据悉,这场发布会联发科将推出全新的天玑8400处理器,这颗芯片基于台积电4nm制程打造,采用Arm Cortex A
点击蓝字 关注我们电网和可再生能源系统向着更智能、更高效的方向发展助力优化能源分配构建更加绿色和可靠的能源未来12 月 24 日 上午 9:30 - 11:302024 德州仪器新能源基础设施技术直播