IBM研究人员发现了一个与霍尔效应相关的140年的秘密,这个之前不为人所知的特性有望为改善半导体性能开辟一个新的途径。该研究小组称这项新技术为载流子消散光电霍尔(CRPH)测量。该项技术需要对霍尔信号进行精确的测量。为此,必须使用振荡磁场(AC)进行霍尔测量。在这种情况下,利用锁定检测技术提取与振荡磁场相同相位的信号就显得尤为重要。

几十年来,研究人员对半导体材料和半导体器件进行了实验,以充分了解它们的物理特性。行业人员通过确定某种材料或设备的物理极限,了解到使用任何给定的材料可以实现哪些性能提升,并据此规划产品路线图。众所周知,大多数此类实验都揭示了其局限性。然而,IBM在《自然》杂志发表的由其引导的合作项目研究却表示,实验结果是相反的;研究人员发现了一个与霍尔效应相关的140年的秘密,这个之前不为人所知的特性有望为改善半导体性能开辟一个新的途径。

霍尔效应

首先,让我们回顾一下霍尔效应。半导体材料中电荷载流子(正电荷或负电荷)的基本属性是它们在外加电场下的速度及其在材料中的密度。1879年,物理学家埃德温·霍尔发现了一种确定这些性质的方法。他发现磁场改变了导体内电子电荷的运动方向,偏转量可以用霍尔电压来测量。该电压与标准电导率测量相结合,提供了有关电荷类型、迁移率(μ)和半导体内部密度的信息。

Halleffect19120901.jpg图1:霍尔效应的布局。为n型半导体施加电流I和垂直于表面(z轴)的磁场B,所产生的电压差VH称为霍尔效应

霍尔效应是指当磁场影响流经导体(或半导体)的电流时,通过导体(或半导体)的可测量电压。由于洛伦兹力和电流的平衡,产生了垂直于外加电流的横向电压。这种物理效应在许多解决方案中都有应用,特别是在现代家电和汽车应用领域。霍尔传感器的使用提高了可靠性和耐久性,消除了运动的机械磨损(图1)。图1显示了电荷通过磁场中半导体时的情况。霍尔电压(VH)垂直于电流方向:

…其中H是霍尔系数,如果大多数载流子是电子,则为负;如果大多数载流子是空穴,则为正。I是电流,Bz是垂直磁场,d是样品厚度。如果存在两个载流子,霍尔系数如下:

Halleffect19120906.png

…其中n是电子的浓度,p是空穴的浓度,μN是电子的迁移率,μP 是空穴的迁移率,q是电子的电荷。多数和少数载流子的性质,如类型、密度和迁移率,是决定半导体器件性能的基本因素。在光照下同时获得这些信息将可以揭示许多关键参数,这对光电器件和太阳能电池至关重要,但这一目标尚未明确实现。

Magazine191218.jpg

物理学的进展

来自IBM、KAIST(韩国科学技术高级研究所)、KRICT(韩国化学技术研究所)和杜克大学的研究人员能够利用霍尔效应,以光作为测试源,提取这些属性,同时获得多数和少数载流子的密度和迁移率、载流子寿命和扩散长度等信息。其实际应用包括新的和更快的半导体特性、性能更好的光电器件,以及可用于人工智能技术的新材料和新器件。

“我们所取得的进步是基于对光的霍尔效应的新认识,它可以用一个简洁的方程式来概括:Δμ=d(σ2H)/dσ,自1879年发现霍尔效应以来的140年里,这方程来一直不为人所知。这个公式表达的是关于空穴和电子的迁移率差的新信息。它有助于我们解决一个长期存在的问题,即如何同时提取半导体器件中的空穴和电子载流子信息。我认为这是一个令人兴奋的进展,因为我们现在可以更深入地研究半导体材料。”该论文的主要作者,IBM的Oki Gunawan说。

在这个实验中,两个载流子都会引起电导率(σ)和霍尔系数(H)的变化,这与霍尔电压和磁场的比值成正比。关键判断在于测量电导率和霍尔系数作为光强的函数,然后通过查看σ-H图(图2)并分析问题,以使用新公式提取各种参数。

该研究小组称这项新技术为载流子消散光电霍尔(CRPH)测量。该项技术需要对霍尔信号进行精确的测量。为此,必须使用振荡磁场(AC)进行霍尔测量。在这种情况下,利用锁定检测技术提取与振荡磁场相同相位的信号就显得尤为重要。

利用IBM先前的研究成果,可以获得单向纯谐波磁场的强振荡。这项研究与磁场约束的一种新效应有关,这种效应被称为“驼峰” 效应,它发生在超过临界长度的两行横向偶极子之间(图2和图3)。

Halleffect19120902.jpg图2:(a)霍尔效应(b)载流子消散光电霍尔(CRPH)效应。(c)CRPH分析。关键的信息来源于测量作测量电导率和霍尔系数作为光强度的函数。隐藏在电导率-霍尔系数(σ-H)曲线的轨迹中,揭示了一个重要的新信息:两个载流子的迁移率差。(由Oki Gunawan/IBM Research提供)

Halleffect19120903.jpg图3:(a)驼峰场限制效应。(b)平行偶极线(PDL)陷阱系统。(c)IBM PDL霍尔系统。(由Oki Gunawan/IBM Research提供)

利用一种叫做亥姆霍兹线圈(Helmholtz coil)的巨大线圈施加静磁场是传统的霍尔效应应用方式。因为它是一个巨大的电感器,所以对交流磁场的产生没有那么有效。在本实验中,我们使用了一种基于平行偶极线(PDL)磁阱系统的新型系统来产生交流磁场,该磁阱系统表现出一种新型的场约束效应,称为“驼峰效应”。如图3(a)和(b)所示。当你旋转PDL系统时,它是产生交流磁场的理想系统,因为该磁场是单向的、纯谐波的,并且有足够的空间发光(图3c),”Gunawan说。

IBM提出的这项新技术允许从半导体中提取大量的信息。使用传统霍尔测量方法只能获取很少(三个)的参数,而这种新技术可以测量电子和空穴在不同光强下的其它参数,如迁移率、扩散长度、密度和复合寿命。本实验的主要目的是测量不同光强下恒速振荡磁场下的霍尔信号。

“通常情况下,我们每分钟旋转一次,这实际上相当慢,因为如果你旋转磁铁太快,可能会有额外的寄生效应,如法拉第电动势电压,这可能会与你期望获得的霍尔效应相矛盾。真正的光电霍尔信号是与振荡磁场具有相同频率和相位的信号。所以,如果你用直流(静态)磁场做这个实验,你想要的霍尔信号将被掩埋。所以,我们相信这也是为什么人们在一百多年内不能解决这个问题的另一个原因,因为你必须用交流磁场来获得精确的实验数据。 ”Gunawan说

这项新的发现和技术将有助于推动半导体的发展,这要归功于能够详细提取半导体材料物理特性的知识和工具。霍尔技术已在各种应用中取代了许多传统测量技术,包括水平测量和电机控制。有几种方法可用于确定位置:例如,如果应用需要一个有限和离散的位置,可以使用简单的开关,如Allegro A1120或A321X。图4显示了检测皮带断裂的可能电路,它利用连接至旋转滚筒和固定霍尔开关的固定磁铁来工作。

Halleffect19120904.jpg图4:霍尔传感器在电路中的应用

电动机的电流消耗与电动机施加的转矩成正比。因此,在微处理器中测量电流消耗是控制电机速度和力的典型方法。微处理器可以计算是否必须向电机施加电流以达到所需速度。霍尔效应电流传感器可以直接与电机串联,因为它们的电阻很低。在全球磁场传感器市场上,汽车行业一直处于领先地位,其市场份额超过40%。

(参考原文:140-year-old secret in the Hall effect discovered,by Maurizio Di Paolo Emilio)

责编:Amy Guan

本文为《电子工程专辑》12月刊杂志文章,版权所有,禁止转载。点击申请免费杂志订阅 

也可点击立即下载,下载12月刊完整版。

EETC-1912-Download.JPG

 

 

本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 是用来测半导体工艺参数的吗?
您可能感兴趣
若交易达成,安森美将获得Allegro在磁传感器领域的技术与客户资源,显著增强其在汽车和工业市场的垂直整合能力。
前空翻对人类而言已属高难度动作,对机器人更是挑战重重。前空翻动作比奔跑更能展现这款机器人的本体硬件潜力和算法团队的实力;相比后空翻,前空翻需要更高的动态平衡能力、瞬间加速度控制以及精准的落地姿态调整……
该芯片的诞生,标志着在理解和绘制复杂神经网络方面迈出了重要一步,有望为神经科学研究、人工智能发展以及心理健康研究等多个领域带来深远影响。
龚诚表示,“该技术体现了光电融合的巨大优势,是微波光子学领域的新尝试。利用该技术,未来我们可以用光来实现对任意电磁波(微波、太赫兹、红外等)的高速探测、调制甚至计算。”
无创血糖检测的难点在于无创葡萄糖传感器的研发,通过无创葡萄糖传感器来进行非侵入式的人体血糖检测。目前来说,按检测方式划分,无创葡萄糖传感器主要有光学传感器和电化学传感器两种……
美国汽车创新联盟认为该新规难以实现,并质疑其技术可行性。现有技术条件下,要求车辆在时速高达62英里/小时(约100公里/小时)的情况下自动刹停并避免碰撞几乎是不可能的。
TEL宣布自2025年3月1日起,现任TEL中国区地区总部——东电电子(上海)有限公司高级执行副总经理赤池昌二正式升任为集团副总裁,同时兼任东电电子(上海)有限公司总裁和东电光电半导体设备(昆山)有限公司总裁。
预计在2025年,以下七大关键趋势将塑造物联网的格局。
领域新成果领域新成果4月必逛电子展!AI、人形机器人、低空飞行、汽车、新能源、半导体六大热门新赛道,来NEPCON China 2025一展全看,速登记!
本次股东大会将采取线上和线下相结合的混合形式召开,股东们可选择现场出席或线上参会。
小米宣布全球首发光学预研技术——小米模块光学系统,同时发布官方宣传视频。简单来说,该系统是一个磁吸式可拆卸镜头,采用定制M4/3传感器+全非球面镜组,带来完整一亿像素,等效35mm焦段,配备f/1.4
本文来源:智能通信定位圈最新消息显示,全球领先的厘米级定位导航企业苏州天硕导航科技有限公司(简称“天硕导航”)近期宣布获得数千万元级的A轮融资。本轮融资目的是扩展业务、产品开发和团队建设,深创投作为本
本文来源:物联网展行业变革:“位置即服务”正催生万亿级市场裂变数据洞察:2025年全球GNSS市场规模预计达680亿美元,年复合增长率28%,其中智能穿戴、资产追踪、工业安全三大场景贡献超50%。增量
差分运算放大电路,对共模信号得到有效抑制,而只对差分信号进行放大,因而得到广泛的应用。差分电路的电路构型    上图是差分电路。    目标处理电压:是采集处理电压,比如在系统中像母线电压的采集处理,
点击蓝字 关注我们SUBSCRIBE to USXoMotion许多脊髓受伤的人都有惊心动魄的灾难经历:潜水事故、车祸、建筑工地灾难等。但Chloë Angus的故事却截然不同。2015年的一个晚上,
在数字化飞速发展的当下,海量数据不断涌现。传统云计算模式下,数据传输到远程云端处理,产生延迟、带宽压力,难以满足实时性和隐私需求。为应对挑战,边缘计算应运而生,将部分计算任务下沉到网络边缘,降低延迟、
点击蓝字 关注我们SUBSCRIBE to USImage: SwitchBotSwitchBot价格实惠、可调节的智能窗帘终于问世了。SwitchBot窗帘(SwitchBot Roller Sha
  合景智慧建设 (广东)有限公司子品牌合洁科技电子净化工程公司(以下简称“合洁科技”)作为洁净工程领域的领军企业,凭借其卓越的技术实力、创新的设计理念和高效的施工能力,在多个行业
为进一步推进商业信用体系建设,促进企业诚实守信经营,面向企业普及诚信与品牌建设的意义,指导企业加强诚信品牌建设,提升其整体竞争力,“崛起的民族品牌”专题系列节目以诚信为内涵,在全国范围内遴选出有行业代
Mar. 5, 2025 产业洞察根据TrendForce集邦咨询最新《5G时代下的突破机会:论全球电信商FWA布局》报告指出,随着美国电信商T-Mobile、Verizon转移营运重心至拓展建置成本