在本文中,将详细研究这两类隔离Σ-Δ调制器的输出数据信号完整性。并通过简单的电磁干扰(EMI)测试设置、对由这两类Σ-Δ调制器的高频时钟信号产生的EMI进行比较。

对输出数据信号完整性和时钟信号电磁干扰(EMI)的比较

隔离的Σ-Δ调制器长期以来被证明可以在嘈杂的工业电机应用环境中提供非常高的精度和强劲的电流和电压感测能力。有两类隔离型Σ-Δ调制器:一种是在IC内部产生时钟信号;另一种是从外部时钟源接收时钟信号。 Σ-Δ调制器生成对应于输入模拟信号的输出数字比特流数据。输出数字数据必须尽可能与时钟信号同步。然后,微控制器以相同的时钟信号频率对该输出数据进行采样,以进一步滤波和抽取。

在本文中,将详细研究这两类隔离Σ-Δ调制器的输出数据信号完整性。并通过简单的电磁干扰(EMI)测试设置、对由这两类Σ-Δ调制器的高频时钟信号产生的EMI进行比较。

隔离型Σ-Δ调制器的简化框图

图1左侧的简化框图说明了典型的内(部)时钟隔离Σ-Δ调制器;右侧是典型的外(部)时钟隔离Σ-Δ调制器。对于内时钟型来说,抖动极低的时钟源构建在与Σ-Δ编码器相同的芯片上。重新生成输出MCLK,以允许输出数据位流MDAT被脉送进微控制器以进行抽取和滤波。对于外时钟型来说,外时钟源为Σ-Δ调制器和微控制器提供时钟信号。将在隔离栅的另一侧检测时钟信号。检测器必须能够承受一定程度的时钟抖动,并重构时钟信号,以实现Σ-Δ编码器的正常功能。

Broadcom19022801.JPG
图1:左图是内时钟隔离的Σ-Δ调制器简化框图;右图是外时钟隔离的Σ-Δ调制器的简化框图;两者都连至微控制器。

输出数据信号完整性

使用相同的微控制器(此例是FPGA),分别测量内和外时钟Σ-Δ调制器的信噪比(SNR)。这两类Σ-Δ调制器的测量设置是相同的,只是外时钟Σ-Δ调制器需要一个20MHz的外时钟源提供时钟信号。下面的图2a和2b显示了测量设置。将1kHz正弦波模拟电压信号注入Σ-Δ调制器的输入端,然后在FPGA处对相应的数字输出比特流数据进行采样,并经过称为抽取的滤波过程。笔记本电脑上显示的应用图形用户界面(GUI)显示了重构的正弦波、快速傅里叶变换(FFT),FFT用以计算信噪比(SNR)和SNR历史图与时间的对应关系。如果FPGA未能正确采样Σ-Δ输出数据比特流,则将清楚地观察到历史图上SNR的突然下降。

 

Broadcom19022802.JPG

图2a:显示了具有相同FPGA板和应用软件的内和外时钟Σ-Δ调制器的测量设置。


Broadcom19022803.png
图2b:显示了测量设置的简化示意图

查看图3中示波器捕获的图像,内时钟Σ-Δ调制器的输出MCLK信号似乎是抖动的。但从输出时钟MCLK的上升沿到输出数据MDAT的上升沿或下降沿的时间延迟,对每个时钟周期看来都是相同的。同样,从外时钟到其输出MDAT的时间延迟似乎也是稳定的。这里可得出结论:对这两类Σ-Δ调制器,MDAT在每个时钟周期始终与MCLK同步。

 

Broadcom19022804.png
图3:显示了示波器捕获的两类Σ-Δ调制器的MCLK和MDAT图像


从图4中所示的SNR历史图与时间的对比来看,对于两类Σ-Δ调制器都没有观察到SNR的突然下降。换句话说,FPGA(微控制器)可正确读取这两类Σ-Δ调制器的输出数据(MDAT)。

 

Broadcom19022805.png.
图4:显示了应用GUI软件中的测量结果

高频时钟信号产生的EMI

高频时钟信号是系统PCB板上EMI的主要来源之一。时钟频率越高、PCB走线越长,时钟信号产生的EMI就越严重。内时钟Σ-Δ调制器的时钟信号走线可以更短。一些内时钟的Σ-Δ调制器还结合了扩频技术来扩展时钟信号的频率峰值,以有效降低EMI。为证明这点,设置了一种如图5所示的简单EMI测量方法,以分别测量内和外时钟Σ-Δ调制器的时钟信号产生的EMI。将环形天线放置在Σ-Δ调制器评估板上方5cm处。示波器设置为将频率从0Hz扫频到100MHz。

 


Broadcom19022806.png
图5:显示了该简单的EMI测量设置,用于测量两类Σ-Δ调制器的时钟信号的EMI


从图6中示波器捕获的图像可以清楚看出,外时钟源产生的EMI要高得多,在时钟信号频率及其谐波处达到峰值。例如,对于60MHz的三次谐波,外时钟源产生的EMI比内时钟Σ-Δ调制器输出时钟信号的高20dB。

 

Broadcom19022807.png
图6:显示了进入外时钟Σ-Δ调制器的时钟信号产生的EMI要高得多,在时钟信号频率及其谐波处达到峰值。

 

 

 

 

 

 

阅读全文,请先
您可能感兴趣
iPhone 16系列一经发售,除了被拆解分析机构盯上,也因为近期的黎巴嫩寻呼机爆炸事件,被一些造谣者盯上。网上出现了大量“禁止携带苹果手机”的通知,正好多家机构日前对iPhone 16进行了拆解,我们借此文还看看里面有没有引爆装置……
至今,航空通用电子技术已经有超过一个世纪的发展历史,可以说它是eVTOL行业发展的基石,不仅关系到飞行器的性能和安全,也是推动eVTOL技术创新和商业化的关键因素。但毕竟就像油车和电车的区别,eVTOL采用的电驱动力,和传统燃油动力的飞行器有着本质区别,究竟这百年的经验,eVTOL能用到多少?又有哪些部分需要自己去摸索创新?
珠海镓未来科技有限公司(GaNext)CTO兼IEEE Fellow吴毅锋发表了“氮化镓功率器件应用的大跨度拓展——从PD快充到户外储能”的主题演讲。
ESD EOS问题如何解决,又有哪些值得注意的地方?人机台和物料究竟哪个更容易发生问题。
科技产品永远不缺天马行空的想象,设计师们脑洞大开,创造了各种既炫酷又实用的高科技电子产品,让我们的生活更加便利和有趣。因此,创新是电子行业经久不衰的长期逻辑根基,而这背后支撑创新的引擎的则是半导体产业的频繁迭代和工艺技术升级。
苹果在近日的发布会上一条堪称“天价”的数据线,引发了网友的热议和吐槽——这是一条黑色的“雷雳4 Pro连接线”,线长1.8米,售价 949元,几乎是一款入门手机的价格。不少普通用户都在不断吐槽智商税,但内行人士认为苹果这跟新品的各方面规格几乎拉满,基本处于金字塔顶尖……
目前,智能终端NFC功能的使用频率越来越高,面对新场景新需求,ITMA多家成员单位一起联合推动iTAP(智能无感接近式协议)标准化项目,预计25年上半年发布1.0标准,通过功能测试、兼容性测试,确保新技术产业应用。
中科院微电子所集成电路制造技术重点实验室刘明院士团队提出了一种基于记忆交叉阵列的符号知识表示解决方案,首次实验演示并验证了忆阻神经-模糊硬件系统在无监督、有监督和迁移学习任务中的应用……
C&K Switches EITS系列直角照明轻触开关提供表面贴装 PIP 端子和标准通孔配置,为电信、数据中心和专业音频/视频设备等广泛应用提供创新的多功能解决方案。
投身国产浪潮向上而行,英韧科技再获“中国芯”认可
来源:苏州工业园区12月17日,江苏路芯半导体技术有限公司掩膜版生产项目迎来重要进展——首批工艺设备机台成功搬入。路芯半导体自2023年成立以来,专注于半导体掩膜版的研发与生产,掌握130nm至28n
近期,多个储能电站项目上新。■ 乐山电力:募资2亿建200MWh储能电站12月17日晚,乐山电力(600644.SH)公告,以简易程序向特定对象发行A股股票申请已获上交所受理,募集资金总额为2亿元。发
万物互联的时代浪潮中,以OLED为代表的新型显示技术,已成为人机交互、智能联结的重要端口。维信诺作为中国OLED赛道的先行者和引领者,凭借自主创新,实现了我国OLED技术的自立自强,成为中国新型显示产
万物互联的时代浪潮中,以OLED为代表的新型显示技术,已成为人机交互、智能联结的重要端口。维信诺作为中国OLED赛道的先行者和引领者,凭借自主创新,实现了我国OLED技术的自立自强,成为中国新型显示产
 “ 担忧似乎为时过早。 ”作者 | RichardSaintvilus编译 | 华尔街大事件由于担心自动驾驶汽车可能取消中介服务,Uber ( NYSE: UBER ) 的股价在短短几周内从 202
扫描关注一起学嵌入式,一起学习,一起成长在嵌入式开发软件中查找和消除潜在的错误是一项艰巨的任务。通常需要英勇的努力和昂贵的工具才能从观察到的崩溃,死机或其他计划外的运行时行为追溯到根本原因。在最坏的情
又一地,新型储能机会来了?■ 印度:2032储能增长12倍,超60GW据印度国家银行SBI报告,印度准备大幅提升能源存储容量,预计到2032财年将增长12 倍,超60GW左右。这也将超过可再生能源本身
今天上午,联发科宣布新一代天玑芯片即将震撼登场,新品会在12月23日15点正式发布。据悉,这场发布会联发科将推出全新的天玑8400处理器,这颗芯片基于台积电4nm制程打造,采用Arm Cortex A
 “ AWS 的收入增长应该会继续加速。 ”作者 | RichardSaintvilus编译 | 华尔街大事件亚马逊公司( NASDAQ:AMZN ) 在当前水平上还有 38% 的上涨空间。这主要得益
上个月,亿万富翁埃隆·马斯克谈到了年轻一代的生育问题。他强调生育的紧迫性,认为无论面临何种困难,生育后代都是必要的,否则人类可能会在无声中走向消亡。他认为人们对于生育的担忧有些过头,担心经济压力等问题