升压转换器用于将较低的输入电压转换成较高的输出电压。要获得最大的“升压”,需要尽可能提高工作占空比。许多控制器的最大占空比在80%至90%的范围内,如果它们以非常低的开关频率工作,则可以增加几个百分点。但如果即使工作在低开关频率下,仍然可能无法获得足够的升压。那么该怎么办呢?

升压转换器用于将较低的输入电压转换成较高的输出电压。要获得最大的“升压”,需要尽可能提高工作占空比。

升压控制器在最大连续占空比上有所限制,后者通常在较低的开关频率下达到最高。如果超过此最大占空比,则会发生脉冲跳跃,这种情况通常不希望遇到,应当避免。许多控制器的最大占空比在80%至90%的范围内,如果它们以非常低的开关频率工作,则可以增加几个百分点。低开关频率需要更大的元器件和更大的电路板面积。但是,即使工作在低开关频率下,仍然可能无法获得足够的升压。那么我们怎么办呢?

图1给出了传统升压转换器功率级的简化示意图。它的主要优点是元器件数量少,采用标准电感器,以及能够实现简单的低边升压控制器。但是,这个基本升压有个关键限制是,假设最大占空比为90%,它只能提供10:1的最大升压比。如果需要更大的升压,可以尝试使用带电荷泵倍增器的升压转换器或反激式转换器。将电荷泵添加到升压转换器,对于小输出电流很有用,但需要额外的元器件来实现。反激转换器也是种合理的解决方案。但是,还有一种更简单的解决方案,具有更少的变压器引脚、更低的匝数比和更低的漏感。

图1:传统的单电感升压转换器功率级。

图2给出了自耦变压器升压转换器。它在同一磁芯上使用了两个串联绕组,作用是充当变压器但没有隔离。与反激转换器相比,将原边与副边串联可降低所需的匝数比,所需的引脚数也更少。

图2:自耦变压器升压转换器可以比传统的升压转换器提供更高的输出电压。

公式1表达了对于给定的Vin、Vout和n2/n1匝数比(忽略FET和电流检测电阻电压降),在连续导通模式(CCM)下工作的占空比:

可以看到,对于较大的n2/n1匝数比,占空比会降低。这对于提供更高的输出电压来说很有利。对该表达式求解Vout,得到公式2

可以看到,如果n2/n1 = 0,则该表达式与传统的升压转换器相同。而对于n2/n1匝数比不为零的情况来说,Vout会增加一个附加值,它等于(n2/n1)*Vin*d/(1-d),因此可以产生更高的输出电压。

图3绘出了几种n2/n1匝数比的升压比、Vout/Vin与占空比的关系图,其中包含了零值,即传统的升压比,用于比较。在90%的占空比下,传统的升压比为10,而对于n2/n1 = 1的情况来说,升压比为19,因此可以将输出电压提高到接近两倍。可以使用标准的耦合电感器轻松实现1:1的n2/n1比,这种电感器大都很容易买到。较大的匝数比可以提供更高的输出电压。

图3:抽头电感器可降低占空比并实现更高的输出电压。

通常,根据设计规格书可以知道升压比。最大的实际占空比是由所选控制器和所需开关频率所确定。图4显示了如何轻松确定所需匝数比。例如,假设需要从10V输入获得250V输出,希望将最大占空比限制在80%,那么就可以选择250V/10V = 25的升压比,然后遵循蓝色曲线(d = 0.8),就可以得到所需的n2/n1为5。

公式3给出了FET关断时的电压应力,而公式4给出了整流器的反向电压应力:

对于上面的设计示例,FET和整流器的电压应力分别为50V和300V。FET的电压应力远低于传统的升压转换器,后者FET的电压应力约为250V!由于存在漏感,因此可能需要使用电阻电容缓冲器来减少振铃。

图4:通过选择升压比和最大占空比来确定所需的匝数比。

将自耦变压器设计到CCM升压转换器中具有多个优点。只需增加一个绕组,就可以增加输出电压,而使其超过传统的升压转换器。它可以降低工作占空比,从而实现更高的开关频率、更小的元件尺寸和更低的FET电压。占空比降低还可以获得更多的控制器选择——以前在传统的升压转换器中使用这些控制器时无法获得足够高的占空比。

(原文刊登于EDN美国版,参考链接:Power Tips #90: Get more boost from your boost converter

本文为《电子技术设计》2020年2月刊杂志文章,版权所有,禁止转载。免费杂志订阅申请点击

责编:Gavin

阅读全文,请先
您可能感兴趣
金刚石以其优异的性能而闻名,长期以来一直有望应用于各种领域,但其作为半导体的潜力却一直面临着商业化的障碍。Advent Diamond公司在解决关键技术难题方面取得了长足进步,特别是制造出了掺磷的单晶金刚石,从而形成了n型层。
CEA-Leti现已宣布启动FAMES项目,这是一条全耗尽绝缘体上硅(FD-SOI)试验线,用于非易失性嵌入式存储器、3D集成、射频元件和电源管理IC等应用,以确保欧洲主权。在FAMES试验线启动之际,笔者对CEA-Leti首席技术官Jean-René Lèquepeys进行了独家专访。
在这份榜单中,国家电网有限公司以5459亿美元的营收连续多年稳居榜首,而京东集团则以卓越的表现成为排名最高的大陆民营企业。
台积电(TSMC)公布了最新的A16芯片制造工艺,改变了技术领先者的游戏规则。该工艺可能领先英特尔的18A节点。但目前还不清楚哪家公司将赢得工艺技术冠军。
关于英诺赛科与宜普公司的两项包括氮化镓技术在内的专利侵权案有了最终判决。美国国际贸易委员会的裁定结果是,英诺赛科侵权宜普公司的其中一项专利。 不过英诺赛科并不同意该判决,判决中提到的英诺赛科侵权EPC的294专利 ,英诺赛科认为,EPC的294专利是无效的。
格芯此次收购Tagore的氮化镓技术及IP,正是瞄准了市场对高效能源管理不断增长的需求。
• 得益于西欧、关键亚洲市场和拉丁美洲市场的增长,以及中国品牌的持续领先,全球折叠屏手机出货量在2024年第二季度同比增长了48%。 • 荣耀凭借其在西欧特别强劲的表现,成为最大的贡献者,成为该地区排名第一的品牌。 • 摩托罗拉的Razr 40系列在北美和拉丁美洲表现良好,为其手机厂商的出货量贡献了三位数的同比增长。 • 我们预计,头部中国手机品牌厂商的不断增加将至少在短期内抑制三星Z6系列在第三季度的发布。
AI技术的发展极大地推动了对先进封装技术的需求,在高密度,高速度,高带宽这“三高”方面提出了严苛的要求。
奕斯伟计算2024首届开发者伙伴大会以“绿色、开放、融合”为主题,从技术创新、产品应用、生态建设等方面,向开发者、行业伙伴等相关方发出开放合作倡议,加速RISC-V在各行各业的深度融合和应用落地,共同推动RISC-V新一代数字基础设施生态创新和产业发展。
2024年 Canalys 中国云计算渠道领导力矩阵冠军厂商分别是:阿里云、华为云和亚马逊云科技(AWS)
文|沪上阿YI路特斯如今处在一个什么样的地位?吉利控股集团高级副总裁、路特斯集团首席执行官冯擎峰一直有着清晰的认知:“这个品牌的挑战依然非常大。首先,整个中国市场豪华汽车整体数据下滑了30%~40%,
‍‍Mobileye 将终止内部激光雷达开发Mobileye 宣布终止用于自动驾驶的激光雷达的开发,并裁员 100 人。Mobileye 认为,下一代 FMCW 激光雷达对可脱眼的自动驾驶来说必要性没
文|萝吉今年下半年开始,国内新能源市场正式跨过50%历史性节点,且份额依然在快速增长——7月渗透率破50%,8月份破55%……在这一片勃勃生机万物竞发的景象下,新能源市场占比最高的纯电车型,却在下半年
据市场调查机构Allied Market Research的《单晶硅晶圆市场》报告指出,2022年单晶硅晶圆市场价值为109亿美元,预计到2032年将达到201亿美元,2023年~2032年的复合年均
会议预告向世界展示中国最具创新力、领导力和品牌化的产品与技术!9月27号,“第6届国际移动机器人集成应用大会暨复合机器人峰会”将在上海举行,敬请关注!逐个击破现有痛难点。文|新战略半导体行业高标准、灵
8月28-30日,PCIM Asia 2024展在深圳举行。“行家说”进行了为期2天的探馆,合计报道了200+碳化硅相关参展企业(.点这里.)。其中,“行家说”还重点采访了骄成超声等十余家企业,深入了
9月6日,“智进AI•网易数智创新企业大会”在秦皇岛正式举行,300+企业高管及代表、数字化技术专家齐聚一堂,探讨当AI从技术探索迈入实际应用,如何成为推动组织无限进化的新引擎。爱分析创始人兼CEO金
在苹果和华为的新品发布会前夕,Counterpoint公布了2024年第一季度的操作系统详细数据,数据显示, 鸿蒙操作系统在2024年第一季度继续保持强劲增长态势,全球市场份额成功突破4%。在中国市场
随着汽车智能化升级进入深水区,车载ECU(域)以及软件复杂度呈现指数级上升趋势。尤其是多域、跨域和未来的中央电子架构的普及,以及5G/V2X等车云通信的增强,如何保障整车的信息与网络安全,以及防范外部
近日,3个电驱动项目迎来最新进展,包括项目量产下线、投产、完成试验等,详情请看:[关注“行家说动力总成”,快速掌握产业最新动态]青山工业:大功率电驱项目下线9月5日,据“把动力传递到每一处”消息,重庆