升压转换器用于将较低的输入电压转换成较高的输出电压。要获得最大的“升压”,需要尽可能提高工作占空比。许多控制器的最大占空比在80%至90%的范围内,如果它们以非常低的开关频率工作,则可以增加几个百分点。但如果即使工作在低开关频率下,仍然可能无法获得足够的升压。那么该怎么办呢?

升压转换器用于将较低的输入电压转换成较高的输出电压。要获得最大的“升压”,需要尽可能提高工作占空比。

升压控制器在最大连续占空比上有所限制,后者通常在较低的开关频率下达到最高。如果超过此最大占空比,则会发生脉冲跳跃,这种情况通常不希望遇到,应当避免。许多控制器的最大占空比在80%至90%的范围内,如果它们以非常低的开关频率工作,则可以增加几个百分点。低开关频率需要更大的元器件和更大的电路板面积。但是,即使工作在低开关频率下,仍然可能无法获得足够的升压。那么我们怎么办呢?

图1给出了传统升压转换器功率级的简化示意图。它的主要优点是元器件数量少,采用标准电感器,以及能够实现简单的低边升压控制器。但是,这个基本升压有个关键限制是,假设最大占空比为90%,它只能提供10:1的最大升压比。如果需要更大的升压,可以尝试使用带电荷泵倍增器的升压转换器或反激式转换器。将电荷泵添加到升压转换器,对于小输出电流很有用,但需要额外的元器件来实现。反激转换器也是种合理的解决方案。但是,还有一种更简单的解决方案,具有更少的变压器引脚、更低的匝数比和更低的漏感。

图1:传统的单电感升压转换器功率级。

图2给出了自耦变压器升压转换器。它在同一磁芯上使用了两个串联绕组,作用是充当变压器但没有隔离。与反激转换器相比,将原边与副边串联可降低所需的匝数比,所需的引脚数也更少。

图2:自耦变压器升压转换器可以比传统的升压转换器提供更高的输出电压。

公式1表达了对于给定的Vin、Vout和n2/n1匝数比(忽略FET和电流检测电阻电压降),在连续导通模式(CCM)下工作的占空比:

可以看到,对于较大的n2/n1匝数比,占空比会降低。这对于提供更高的输出电压来说很有利。对该表达式求解Vout,得到公式2

可以看到,如果n2/n1 = 0,则该表达式与传统的升压转换器相同。而对于n2/n1匝数比不为零的情况来说,Vout会增加一个附加值,它等于(n2/n1)*Vin*d/(1-d),因此可以产生更高的输出电压。

图3绘出了几种n2/n1匝数比的升压比、Vout/Vin与占空比的关系图,其中包含了零值,即传统的升压比,用于比较。在90%的占空比下,传统的升压比为10,而对于n2/n1 = 1的情况来说,升压比为19,因此可以将输出电压提高到接近两倍。可以使用标准的耦合电感器轻松实现1:1的n2/n1比,这种电感器大都很容易买到。较大的匝数比可以提供更高的输出电压。

图3:抽头电感器可降低占空比并实现更高的输出电压。

通常,根据设计规格书可以知道升压比。最大的实际占空比是由所选控制器和所需开关频率所确定。图4显示了如何轻松确定所需匝数比。例如,假设需要从10V输入获得250V输出,希望将最大占空比限制在80%,那么就可以选择250V/10V = 25的升压比,然后遵循蓝色曲线(d = 0.8),就可以得到所需的n2/n1为5。

公式3给出了FET关断时的电压应力,而公式4给出了整流器的反向电压应力:

对于上面的设计示例,FET和整流器的电压应力分别为50V和300V。FET的电压应力远低于传统的升压转换器,后者FET的电压应力约为250V!由于存在漏感,因此可能需要使用电阻电容缓冲器来减少振铃。

图4:通过选择升压比和最大占空比来确定所需的匝数比。

将自耦变压器设计到CCM升压转换器中具有多个优点。只需增加一个绕组,就可以增加输出电压,而使其超过传统的升压转换器。它可以降低工作占空比,从而实现更高的开关频率、更小的元件尺寸和更低的FET电压。占空比降低还可以获得更多的控制器选择——以前在传统的升压转换器中使用这些控制器时无法获得足够高的占空比。

(原文刊登于EDN美国版,参考链接:Power Tips #90: Get more boost from your boost converter

本文为《电子技术设计》2020年2月刊杂志文章,版权所有,禁止转载。免费杂志订阅申请点击

责编:Gavin

您可能感兴趣
安森美半导体此次裁员决策并非毫无预兆,主要原因是市场需求的下降和公司收入的减少。
从运算放大器、逻辑功能芯片到高端处理器等基本抗辐射器件已经存在多年,并提供多种辐射耐受等级。尽管抗辐射是必要条件之一,仅靠器件本身并不足以保证整个电路的抗辐射性能。
物理世界对智能的需求正在推动边缘设备支持复杂计算,如人工智能、机器学习、数字信号处理和数据分析等。这增加了能源需求,而这些设备通常处于能源匮乏状态。因此,迫切需要从根本上重新考虑制造这些设备的计算硬件以提高能源效率。
英诺赛科此次上市标志着作为氮化镓功率半导体领域的龙头企业正式进入资本市场,并成为港股“第三代半导体”第一股。英诺赛科的开盘价为31港元,较发行价上涨了0.5%,但随后股价跌破了发行价,市值约为270亿港元......
本文整理分析了30家本土上市半导体公司2024三季度财报数据,结合第三季部分企业的重点新闻,让读者了解目前本土电源管理芯片市场现状及企业布局。
宽禁带半导体材料的兴起成为了电力电子领域最为显著的变化之一。作为行业领导者,PI公司不仅敏锐地捕捉到了这一趋势,而且通过自主研发和技术创新,积极地适应了市场的变化。借该公司1700V氮化镓功率器件发布之机,笔者有幸对PI营销副总裁Doug Bailey进行了专访。
TEL宣布自2025年3月1日起,现任TEL中国区地区总部——东电电子(上海)有限公司高级执行副总经理赤池昌二正式升任为集团副总裁,同时兼任东电电子(上海)有限公司总裁和东电光电半导体设备(昆山)有限公司总裁。
预计在2025年,以下七大关键趋势将塑造物联网的格局。
领域新成果领域新成果4月必逛电子展!AI、人形机器人、低空飞行、汽车、新能源、半导体六大热门新赛道,来NEPCON China 2025一展全看,速登记!
本次股东大会将采取线上和线下相结合的混合形式召开,股东们可选择现场出席或线上参会。
Mar. 5, 2025 产业洞察根据TrendForce集邦咨询最新研究,TSMC(台积电)近日宣布提高在美国的先进半导体制造投资,总金额达1650亿美元,若新增的三座厂区扩产进度顺利,预计最快20
本文来源:物联网展行业变革:“位置即服务”正催生万亿级市场裂变数据洞察:2025年全球GNSS市场规模预计达680亿美元,年复合增长率28%,其中智能穿戴、资产追踪、工业安全三大场景贡献超50%。增量
今日光电     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光引未来...欢迎来到今日光电!----追光逐电 光引未来----图1 采用自上而下方法实
引言 嘿,各位电动汽车的爱好者们!咱们今儿个就来聊聊电动汽车里那些“看不见,摸不着”,但又至关重要的零部件。要说电动汽车这玩意儿,那可真是科技含量满满,各种高精尖的技术都往里堆。但要让这些
本文来源:智能通信定位圈自动跟随类的产品属于比较酷炫功能的“黑科技”产品。要实现自动跟随的技术可以有很多,但是最常用的就是UWB,因为UWB定位精度高,现在的成本也在下降,手机中也开始逐渐普及UWB等
先问大家一个问题:你有多久没看电视了?对老局来说,最近这几年除了春晚和国庆阅兵,其他情况下,基本已经不会看电视了。当然了,连着PS5打游戏那是另外一回事。不过,虽然我们不怎么看电视了,但电视的市场却并
在储能行业蓬勃发展的浪潮中,安富利凭借卓越的技术实力与广泛的市场影响力,荣获2025“北极星杯”储能影响力BMS/EMS供应商奖。这一荣誉不仅是对安富利过往成就的高度认可,更是对其在储能领域持续创新与
3月4日,中国商务部接连发布三则公告,对26家美国实体/企业采取不同的管制措施。商务部公告2025年第13号显示,根据《中华人民共和国出口管制法》和《中华人民共和国两用物项出口管制条例》等法律法规有关
高通又放大招了!3月3日,也就是MWC世界移动通信大会的第一天,高通正式宣布,推出自家的最新5G调制解调器及射频解决方案——高通X85。高通X85对于高通X85的发布,行业早有关注。因为高通的手机So
面板价格预测(3月)根据TrendForce集邦咨询旗下面板研究中心《TrendForce 2025面板价格预测月度报告》最新调研数据:2025年3月,电视面板与显示器面板价格预期上涨,笔记本面板价格