传统上认为只有碳化硅能够切入的高压领域,氮化镓产品也已经出来了——看PI VP在2024年CEO峰会上如何解读!

近年来,氮化镓(GaN)作为一种极具吸引力的宽禁带(WBG)半导体材料,在中低压应用领域迅速崛起。这种材料凭借其高性能和小尺寸的特点,在便携式电子设备中展现出巨大潜力。然而,氮化镓的技术进步并未止步于此,其在高压应用中的潜力同样令人瞩目。

近日,在国际集成电路展览会暨研讨会(IIC Shenzhen 2024)同期举办的2024年CEO峰会上,Power Integrations(PI)公司的营销副总裁Doug Bailey以“Will SiC Survive the Emergence of Super-High Voltage GaN?”为题发表了一场颇具争议性的演讲,探讨了超高压氮化镓技术的崛起及其对碳化硅(SiC)市场的潜在影响。这一演讲不仅引人深思,而且具有重要的现实意义。

Bailey指出,Power Integrations近期推出了1700V的氮化镓器件,这是首个超过1200V等级的氮化镓器件。此前,该公司已于一年前推出了1250V的器件。这些进展表明,氮化镓技术正在迅速发展,逐渐逼近甚至超越碳化硅的性能。Bailey强调,这一系列创新旨在取代碳化硅,这是该公司的使命。

净零经济下,功率半导体市场前景广阔

根据国际能源署(IEA)发布的净零经济投资图,每年约有4万亿美元的投资用于需要功率半导体的设备、系统和机器。这是一个巨大的市场,涵盖氢能源、电力系统、交通和工业过程电气化,以及太阳能和风能等可再生能源领域。氮化镓和碳化硅等宽禁带半导体在这些领域具有广泛的应用前景。

WBG半导体技术与硅对比

为何氮化镓和碳化硅等宽禁带半导体产品更受青睐?从根本上说,这些材料耗散的能量更少,效率更高。高效率意味着可以在更小的空间内实现相同的功能。此外,当其他材料无法满足需求时,这些材料仍然可以胜任。在处理能量时,高效率还能节省成本。然而,尽管硅在许多方面表现不佳,如耗散能量大、体积庞大、动态性能差,但其依然被广泛使用,主要归因于其悠久的历史。

碳化硅作为一种高压功率半导体,在几乎所有可以想象到的方面都更胜一筹。无论是从效率、机械尺寸还是电气适用性来看,氮化镓与碳化硅不相上下,但在电压宽度方面,氮化镓才刚刚起步。“这正是我们在电源集成方面一直努力的方向。”Bailey如是说。

成本是半导体开关最重要的考量因素之一。成本从何而来?首先涉及的是材料成本。硅、碳和氮这三种元素都不稀有,最稀有的元素是镓。然而,镓在开采铝矿时可作为副产品免费获得。实际上,全球镓的储量丰富。综上所述,这些材料均不属于稀有范畴,因此从本质上讲,它们的成本相对低廉。

接下来是产量问题。氮化镓在产量上落后于碳化硅,也远远落后于硅。这也是Power Integrations致力于改善产品成本结构的一个重要方面。

Bailey进一步指出了碳化硅的两个难以克服的缺陷,而氮化镓却能够克服这些问题。碳化硅的生产需要大量机器和时间,外延生长非常缓慢,熔炉需要长时间工作,导致机器成本高昂。此外,碳化硅需要在极高温度下处理,而氮化镓则可以使用普通的CMOS工艺制造。“在我看来,碳化硅的这两个‘缺陷’是该材料本身的根本问题,难以克服”。

WBG半导体的开关损耗远低于硅

宽禁带材料为何优于硅?随着晶粒尺寸的增加,总损耗(导通损耗+开关损耗)降低。研究表明,宽禁带半导体在导通时表现出优异的导电性能。

 “超导体具有一层非常薄的薄膜或载流子,当它们在材料中移动时,受到的阻力非常小。因此,这些器件或材料在传导损耗方面具有显著优势。”Bailey解释道。

功率开关的另一个关键参数是其可以工作的开关频率。在千赫兹、万赫兹,甚至百万赫兹的范围内频繁开关电源时,宽禁带材料的开关损耗非常低。由于其物理尺寸较小,开关时不需要对较大的输出电容进行放电,因此开关损耗显著降低。

将这两点结合起来,总损耗降低意味着与硅相比,宽禁带材料具有不可动摇的优势。对于任何应用领域而言,宽禁带材料都是一类更优的选择,唯一的差别在于成本。

不同功率水平下的典型应用及最适合的开关技术

以10的倍数来定义功率水平,从10W(可能是一个10W的手机充电器)到1GW(可能是通过高压直流线路传输的能量),可以定位一系列典型应用,包括高电压应用,如暖通空调(HVAC)和风力发电——风力发电已经达到10MW甚至20MW的水平,高速列车和逆变器驱动的电动汽车也达到了几百MW,再到电动汽车充电中的电桥,直至笔记本电脑适配器,甚至冰箱电源。

笔记本适配器领域的主导技术是什么?Bailey认为:“这一点非常明确,氮化镓是主流技术。如果你拥有一台新款笔记本适配器,很可能内部就使用了氮化镓技术。我想说的是,GaN在100W级别是主流。”

在1kW级别,如服务器电源、车载充电器、DC-DC转换器中,氮化镓都是赢家。在10kW级别,即大型服务器电源和太阳能电池阵列中,氮化镓同样表现出色。在Bailey看来,氮化镓无疑是比MOSFET或碳化硅更优的技术。

他认为,在电动汽车牵引领域,尽管目前人们一直在尝试使用碳化硅,但氮化镓最终将实现这一目标。

在极低功率水平下,当需要非常紧凑、超小的产品时,氮化镓是理想选择。但对于10W的电源而言,氮化镓器件可能过于小巧,不便于制造和组装,因此其优势并不明显。

在高压领域,IGBT仍将是首选器件,但1MW级别可能是个例外。这也是Bailey认为碳化硅的发展方向,即在IGBT和氮化镓之间徘徊,但氮化镓将在1MW级产品中占据主导地位。

PI宽禁带半导体发展历程

回顾电源领域的发展历程,硅基器件已使用了很长时间。

大约四五年前,PI推出了首款750V的氮化镓器件。“我们推出的这款氮化镓器件在汽车领域表现非常出色。氮化镓在汽车领域广为人知,深受喜爱,被广泛用于汽车应急电源。它在1200V的总线上运行良好。汽车行业通常只需要800V,但他们喜欢多一些裕量。因此,我们推出了1700V的器件。我们已经通过了700V、900V和1700V的汽车认证。实际上,900V的氮化镓器件也通过了汽车认证。因此,这是400V总线应用的理想选择。大家可以在汽车应用中使用氮化镓器件。”Bailey介绍道。

去年,PI推出了一款1200V的氮化镓开关。这种开关特别适合保护那些使用工业电源的应用,或者那些市电可能不太稳定的地区。例如,印度就倾向于在计量系统中使用1250V的器件。

就在11月4日,PI推出了1700V的氮化镓器件。“我们为此感到非常自豪。”Bailey表示。

“从市场适用性来看,随着电压的提高,我们将以非常积极的方式拓展市场。我们从手机充电器、电视机、笔记本适配器起家,如今已进入汽车充电、计量系统、太阳能电池阵列和电池储能领域。”Bailey说道。

1700V GaN效率媲美750V产品

再来看氮化镓开关的相对效率。下图中有三条曲线。左边是750V的氮化镓开关,其工作电压约为400V。一旦超过400V,就需要使用新的1700V器件。相比之下,硅在电压升高时效率大幅下降。而氮化镓则没有明显的效率损失,这意味着在设计应用时,如果使用PI的器件,可以在不影响效率的情况下升级开关,从而提供额外的保护和电压裕量。

传统上,从750V低压氮化镓获得高压支持的最佳替代方法是在其上串联一个StackFET。可以注意到,在900VDC的母线电压下,其效率约为82%,而采用1700V氮化镓器件,其损耗几乎减少了一半。“这是一种更好的思路。当我们把效率从80%多提升到90%多时,损耗可以减少一半。或者,可以从相同的体积获得双倍的能量。这是非常重要的。”Bailey指出。

耗尽型氮化镓比增强型更佳

另外,并不是所有的氮化镓都相同。在设计最初的氮化镓产品时,PI决定采用耗尽型氮化镓,而其他公司则采用增强型。对于PI的应用领域而言,耗尽型氮化镓因其坚固性和可靠性而更为合适。

笔记本充电器应用实例——有源钳位反激式拓扑

以下是一个笔记本充电器的例子。通常情况下,笔记本充电器的效率为90%或89%。“欧盟是国际上对笔记本充电要求最严格的国家,对于60W左右的充电器来说,充电效率为89%。我们的效率超过95%,是最好、最严格的国际标准损耗的一半,可以制造出世界上最紧凑的充电器和适配器。”Bailey表示。

这实际上使用了两个氮化镓器件,一个是用于主开关的氮化镓开关,另一个是用于再循环漏感能量的有源钳位功率开关,也就是常见的有源钳位反激拓扑。其目的是将效率最大化,以缩小电源体积,提升功率密度。

结语

总之,氮化镓现已在全球范围内得到广泛应用。无论是在冰箱、空调系统中,还是在服务器、咖啡机中,都可以见到其身影。最初应用于适配器的氮化镓,如今已无处不在。

因此,Bailey向工程师强烈推荐,“当您在考虑未来的产品设计,特别是电源子系统时,请务必考虑氮化镓,它确实是最佳选择”!

责编:Franklin
本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
阅读全文,请先
您可能感兴趣
DTCO作为一种整合式优化的方法论,旨在改善芯片的效能、功耗效率、晶体管密度、良率及成本。在IDM时代,DTCO是标准方法学,随着Fabless与Foundry模式的成功……
业内人士也认为,闻泰科技此次战略转型有助于明确其成长性和确定性,未来随着转型显效,有望为投资者带来更多回报。
去年就完成了私有化的东芝,现如今在中国打算怎么发展半导体?进博会上,东芝是这么说的...
从碳化硅竞争态势来看,目前国际竞争焦点逐步从技术研发转向大规模量产。詹旭标相信,依托巨大的应用市场和高效产能提升,中国将在未来SiC竞争中发挥重要影响力。
提升功率密度的需求给功率器件及其封装与冷却技术带来了特定的挑战。
当前全球FD-SOI技术的主要参与者包括Soitec、GlobalFoundries、三星电子、意法半导体等公司,它们在FD-SOI技术的研发和商业化方面投入了大量资源,目前行业的进展如何?
本研究通过设计闪存存算一体架构,有效提升了计算效率和精度,为解决复杂计算任务提供了重要技术支撑。
日本两大全球汽车集团本田与日产于2024年12月23日宣布启动合并谈判,目标在2025年6月达成协议,三菱汽车也有望加入。若三家车厂顺利合并,当务之急将是整合各自的资源以节省开支,利用规模化生产降低成本,以及加快电动车相关计划......
芯联集成与广汽埃安共建联合实验室,将共同推动汽车半导体技术研发创新,为智能电动汽车注入新活力。
美芯晟最新推出全集成精确直接飞行时间测距的dToF传感器MT3801,基于单光子飞行时间进行精确测距,测距范围支持到5m,同时集成SPAD、算法处理模块、Cortex M0内核和940nm VCSEL及光学滤光片,可广泛应用于手机/Pad、扫地机、吹风机、水龙头、智能马桶、投影仪、无人机等领域。
点击左上角“锂电联盟会长”,即可关注!在锂离子电池中,正极材料是决定电池能量密度和安全性的主要因素。市场上常见的LIBs正极材料包括层状结构的LiCoO2和三元正极材料(LiNi1-x-yCoxMny
在科技领域蓬勃发展的 2025 年伊始,洛微科技(LuminWave)正式宣布获得北京电控光电融合基金战略投资,并完成B1轮融资首关,成为本年度激光雷达行业以及光电融合产业领域的开篇力作,犹如一颗闪耀
大联大控股宣布,其旗下世平推出基于恩智浦(NXP)S32K312微控制器和FS2303B安全电源管理芯片的汽车通用评估板方案。 图示1-大联大世平基于NXP产品的汽车通用评估
点击上面↑“电动知家”关注,记得加☆“星标”!电动知家消息,1月2日,赛力斯集团董事长(创始人)张兴海向全体员工发布题为《一个目标干到底》的新年寄语。张兴海指出,2024年是具有里程碑意义、转折性意义
点击上面↑“电动知家”关注,记得加☆“星标”!电动知家消息,北京时间2025年1月2日晚,特斯拉发布2024年第四季度及全年生产与交付报告。数据显示,特斯拉2024年全年销量为179万辆,较2023年
产品图文&视频1.揭秘OTN 400G为中国移动OTN 400G项目用户定制编写,内容包括中兴通讯OTN 400G热点词条。旨在通过简洁、趣味、轻松的文字和图片,给用户传递相关的知识和信息,帮助用户在
芝能科技出品在CES2025前,我们探讨一下机器人 AI 技术,阐述其定义、所需数据与算力及产品迭代路径,并详细分析人形机器人发展瓶颈。研究发现,机器人 AI 是实现机器人智能交互与自主决策的关键,其
Omdia观点: 5G-A促进对用户想要的和会为之付费的服务的了解。调查的受访者将速度(即“更快的速度”、“高端下载速度”和“速度加速”)作为他们愿意支付更多的前三项5G功能(见右侧Omdia的《20
点击上方“C语言与CPP编程”,选择“关注/置顶/星标公众号”干货福利,第一时间送达!最近有小伙伴说没有收到当天的文章推送,这是因为微信更改了推送机制,导致没有星标公众号的小伙伴刷不到当天推送的文章,
点击左上角“锂电联盟会长”,即可关注!市场有消息称,比亚迪12月15日临时决定率先启动磷酸铁锂招标,先于负极材料、铜箔等环节。12月18日,龙蟠科技(02465)早盘一度急升逾15%。资料显示,龙蟠科