量子计算利用了三种关键量子原理:叠加、纠缠和干涉。这些概念在量子计算机中发挥着根本作用,从而使得量子计算机与传统计算机有很大不同。

众所周知,计算机在科学、教育、经济和日常生活中执行着广泛的任务。匈牙利物理学家和数学家约翰·冯·诺依曼受英国数学家艾伦·图灵的启发,提出了基于程序存储的同名体系结构,奠定了计算和现代计算机科学的逻辑数学基础。

一个传统的数字计算机系统有四个基本部件:输入/输出端口、主存储器、控制单元和算术逻辑单元(ALU)。对于目前的超级计算机,受传统计算结构限制,在处理最困难任务方面存在着诸多局限性,因此研究人员眼光投向了量子计算机。量子计算与人工智能一起,代表着近期主要技术和科学挑战。

实际上,第一台计算机是机械式的,由法国的布莱斯·帕斯卡和德国的戈特弗里德·威廉·莱布尼茨在17世纪发明。而第一台电子数字计算机则被认为是由美国科学家约翰·文森特·阿塔纳索夫建造的,1939~1942年间,他在一名研究生的帮助下,建造了这台计算机。1946年,在阿塔纳索夫的机器基础上,宾夕法尼亚大学的J. Presper Eckert和John W. Mauchly建造了ENIAC(电子数值积分计算机)。这两台计算机都使用真空管代替继电器作为有源逻辑块,这一特性使处理速度显著提高。实际上,在数字计算机路线图上,还点缀着其他重要创新,包括从晶体管到集成电路,最后到20世纪80年代的微处理器和超大规模集成电路。

尽管微电子技术的进步推动了处理技术的惊人进步,但实际上,计算机架构却基本上没有什么变化。

量子计算新概念

1959年,一种描述光与物质相互作用的量子电动力学(QED)新公式,由美国物理学家、诺贝尔奖获得者理查德·费曼提出。他认为,随着电子器件接近微观尺寸,量子物理学预测的奇特效应就会出现,而这些效应可以用于设计更强大的计算机。仅在原子或粒子尺度上才会发生的这种神秘现象,是量子计算硬件的基础。

量子计算利用了三种关键量子原理:叠加、纠缠和干涉。这些概念在量子计算机中发挥着根本作用,从而使得量子计算机与传统计算机有很大不同。

叠加

在量子力学世界,粒子等物体不一定具有明确定义的状态,正如著名的双缝实验所证明的那样。在该实验中,当单个光子通过具有两个小狭缝的光敏屏幕时,将会产生一个干涉图案,这与光波所产生的结果相类似,这被视为所有可用路径叠加的结果。如果利用探测器来试图确定光子穿过的是两条狭缝中的哪一条时,干涉图案就消失了。对这一奇怪结果的解释是,在测量之前,量子系统“存在”于所有可能的状态中,当引入致命的微扰后,系统崩溃为一种状态,这被称为退相干。如果在计算机中再现这一现象,就有望以指数级扩展其计算能力。

传统的数字计算机采用二进制数字或位,可处于两种状态之一,表示为0和1。这样,对于4位计算机寄存器,可以保存16(24)个可能数字中的任何一个。而量子比特(量子位)存在于0和1值的波状叠加中,因此,一个4量子位的计算机寄存器,可以同时处理16个不同的数字。理论上,量子计算机可以并行处理超多的值,一台仅有30个量子位的量子计算机,就可以与每秒执行10万亿次浮点运算(TFLOPS)的数字计算机相媲美,即可与超级数字计算机相比拟。

当今最快的数字计算机是“前沿”(Frontier),安装在美国能源部的橡树岭国家实验室(位于田纳西州),速度达到1018FLOPS。建立在经典体系结构上的超级计算机是非常复杂和笨重的机器,需要大量的并行器件和处理器。以Frontier为例,其内含9408个CPU、37632个GPU和8730112个内核,所有这些都通过长达145km的电缆连接在一起。该计算机占地372m2,功耗为21MW,峰值时高达40MW。

纠缠

叠加是量子位同时存在于多个状态(0、1或两者的任何组合)的能力,而纠缠则是两个或多个量子位相互关联的量子现象。换句话说,一个量子位的状态描述不能独立于其伴侣的状态。这种相互依赖性,允许相互纠缠的量子位之间进行信息即时共享,无论它们相距多远。爱因斯坦将这种现象称为“鬼魅般的超距作用”(spooky action at a distance),以凸显他对量子力学的不确定性和非局部性的厌烦。然而,纠缠却是许多量子算法的支柱,可以更快、更高效地解决问题。

干涉

当两个或多个量子态结合在一起形成一个新态时,就会发生干涉,从而产生相长干涉或相消干涉。相长干涉放大获得正确输出的概率,而相消干涉则降低错误输出的概率。通过操纵干涉模式,量子计算机可以快速解析潜在的解决方案,比经典计算机更快地得出正确答案。

但是量子位是如何建立起来的呢?

考虑单个电子及其角动量,即自旋。被量化的自旋可以是向上的,也可以是向下的。通过将0定义为自旋上升态,将1定义为自旋下降态,电子可以用作量子位。在这里,使用理论数学家和物理学家保罗·狄拉克的bra-ket表示法是有用的。量子态可以用“ket”(基本上是许多列向量)来表示,因此这两个态可以写成|0>和|1>。因此,自旋的作用与晶体管在标准布尔逻辑中实现一个比特/位的作用相同。

叠加原理指出,与传统数字比特完全不同,量子位可以同时用0和1的叠加来表示。在数学表示法中,如果|ψ>被视为量子位的状态,则可表示为:

|ψ>=W0|0>+W1|1>

式中,W0与W1为两个数字,分别表示|0>和|1>在叠加中的相对权重。更正式地说,这些数字是量子位的复概率幅度,决定了在测量量子位状态时得到0或1的概率。当然,它们必须服从如下的归一化条件,即:

|W0|2+|W1|2=1

当W0=1且W1=0时,量子位处于其|0>状态,对应于晶体管的截止状态;相反,若W0=0且W1=1,则量子位状态对应于晶体管的导通状态。对于W0和W1的任何其他值,就好像晶体管,用经典的术语来说,既不是“关”也不是“开”,而是同时“开”和“关”,这就像量子力学创始人之一埃德温·薛定谔构想的著名思想实验那样,猫既是死的又是活的。

叠加可以让一个量子位同时进行两次计算,如果两个量子比特通过纠缠连接,则可以同时进行22即4次计算:

|ψ>=W00|00>+W01|01>+W10|10>+W11|11>

三个量子位则可以并行处理23即8次计算,以此类推。

原则上,一台拥有300个量子位的量子计算机,可以在瞬间执行比宇宙中可见原子还要多的计算。如今,拥有如此多量子位的量子计算机已经出现,那就是IBM的鱼鹰量子计算机(433位),拥有迄今最强大的量子处理器,该机器已可在IBM云上进行探索性技术演示。

在对量子位中的数据进行编码之后,有必要修改和操纵量子位的状态。在数字计算机中,这是通过诸如AND、NAND和NOR之类的逻辑门执行的基本操作来实现的。而量子计算机中的相应操作,则由量子门来实现,量子门可以根据所涉及的量子位数量进行分类。与传统逻辑门相反,量子门可以创建和操纵纠缠和叠加,这对提高量子计算机的计算能力至关重要。

图1:IBM鱼鹰量子处理器。(来源:IBM)

通过一组量子逻辑运算对量子位执行运算的一些量子门是Pauli-X、Pauli-Y、Pauli-Z、Hadamard和CNOT(受控NOT)。例如,Pauli-X是传统NOT逻辑门的量子模拟。Hadamard门将单个量子位转换为|0>和|1>状态的完美叠加。这样,由该门“转换”的单个量子位数的度量值,将以相同的概率产生|0>或|1>,即:W1=W2=1/√2。实际上,(1/√2)2+(1/√2)2=1。

量子处理单元

量子计算硬件的核心组件,即量子处理单元(QPU),通过一系列量子门来处理量子位,从而执行量子算法。广泛用于数据中心数据处理单元的CPU、GPU和DPU等传统处理器,利用的是经典物理原理,而QPU通过处理量子位,使量子计算机能够执行比传统计算机更快的复杂计算。QPU的底层技术可能各不相同,如核磁共振、捕获离子、超导量子位和光子芯片,每种方法都具有独特的优势和挑战。由于实现和体系结构的不同,故不能简单地通过看所处理的量子位数量的多少来比较QPU。

量子计算正在成为世界上最具变革性的技术之一,但约束条件是严格的。量子计算机必须在足够长的时间内,保持量子位之间的相干性(或量子纠缠),才能运行完整的算法。然而,由于几乎不可避免地与环境相互作用,可能会发生退相干。因此,需要制定稳健的误差检测和校正方法。最后,由于测量量子系统的行为也会干扰其状态,还必须设计出可靠的信息提取方法。

无论如何,可以肯定的是,我们将享受计算科学的另一场革命。当今许多棘手的问题,都可以用新机器来解决。实际上,量子计算令人印象深刻的能力,已引发相关公司之间的激烈竞争,以实现“量子霸权”。

(原文刊登于EE Times欧洲版,参考链接:Physical Principles Underpinning Quantum Computing,由Franklin Zhao编译。)

本文为《电子工程专辑》2024年4月刊杂志文章,版权所有,禁止转载。免费杂志订阅申请点击这里

责编:Franklin
本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 完全超出理觧
阅读全文,请先
您可能感兴趣
瑞士巴塞尔大学量子光学实验室的研究人员利用一个充满铷蒸气的毫米级玻璃单元,展示了如何在室温下将量子数据存储在气体原子中,然后利用光脉冲进行检索。
复旦大学物理学系赵俊教授团队则利用高压光学浮区技术,成功生长了三层镍氧化物La4Ni3O10高质量单晶样品,并证实了这种材料在压力诱导下具有体超导电性(bulk superconductivity),其超导体积分数达到86%。
研究团队通过迭代电子束曝光和干法刻蚀工艺,攻克高质量氮化镓晶体薄膜生长、波导侧壁与表面散射损耗等技术难题,成功获得了低损耗氮化镓光波导和百万品质因子的氮化镓光学微腔,在国际上首次将氮化镓材料运用于量子光源芯片。
目前,硅臻芯片相关产品包含量子随机数发生器芯片、光量子计算芯片、光量子信息集成芯片、光互连芯片等光量子集成芯片和器件。其中,量子随机数发生器芯片QRNG-10已投入量产。而此次商用密码管理局的认证,更是解决了量子产品商用“无证可依”的尴尬,为硅臻芯片QRNG系列产品走向更广泛的用户终端提供了可能。
量子计算正在向我们快步走来!在理解、设计和优化量子器件的行为方面,量子器件建模发挥着至关重要的作用,但却面临着一系列挑战。本文除了分析量子器件建模的各种挑战外,还分析了量子计算原理和退相干成因,介绍了建模注意事项及专业测试解决方案提供商Keysight的、支持量子器件晶圆级自动化测量的量子器件建模平台。
“本源悟空”的上线运行,标志着中国在超导量子计算机领域已经具备了自主研发和创新能力。这不仅有助于提升中国在全球量子计算领域的地位,也将为全球量子计算技术的发展注入新的活力。
微电子和软件技术的快速发展正在深刻地改变车载娱乐中控和安全系统设计,重新定义驾驶体验。
本系列文章从数字芯片设计项目技术总监的角度出发,介绍了如何将芯片的产品定义与设计和验证规划进行结合,详细讲述了在FPGA上使用硅知识产权(IP)内核来开发ASIC原型项目时,必须认真考虑的一些问题。
在即将到来的慕尼黑国际电子元器件博览会(electronica 2024)上,英飞凌科技股份公司将展示其创新的解决方案如何推动全球低碳化和数字化进程,充分展现半导体产品如何为实现净零经济铺平道路,并释放人工智能的全部潜力。
vivo旗下品牌iQOO正式发布了年度性能旗舰iQOO 13,除了高通骁龙8芯片、vivo自研的电竞芯片Q2外,最值得一提的是还采用了汇顶科技提供的多项创新技术,包括超声波指纹识别、新一代屏下光线传感器以及智能音频放大器与软件方案。
来源:《中国半导体大硅片年度报告2024》2016 年至 2023 年间,全球半导体硅片(不含 SOI)销售额从 72.09 亿美元上升至121.29 亿美元,年均复合增长率达 7.72%。2016
亚化咨询重磅推出《中国半导体材料、晶圆厂、封测项目及设备中标、进口数据全家桶》。本数据库月度更新,以EXCEL表格的形式每月发送到客户指定邮箱。中国大陆半导体大硅片项目表(月度更新)中国大陆再生晶圆项
本文来源:智能通信定位圈10月24日,全球领先的物联网(IoT)解决方案提供商Silicon Labs(下称“芯科科技“)在上海成功举办2024年“Works With开发者大会”。本届大会以“创新结
近日,有网友曝光了小米汽车员工职级与薪资一览表。据了解,小米汽车员工分为专员、专家/经理/主管、总监、VP/CXO等四类,职级从13 级到 22级共10级。值得一提的是。小米科技有限责任公司创始人、董
动动手指,关注公众号并加星标哦这几天一直在老家,整不了要特别费脑子的事情,比如那个做题。所以只能搞一些不太费脑子的事情,还有零零星星地回答课程号友们的一些问题。这两天,有两位号友分别问了ADS和Gen
10月30日,上汽集团发布第三季度财报。财报显示,第三季度上汽集团营业收入1425.60亿元,同比下滑25.58%;净利润仅2.80亿元,同比下降93.53%。归属于上市公司股东的扣除非经常性损益的净
GIPHY平台于2023年被Shutterstock收购,每天触达超过10亿用户。美通社消息,作为全球最大的GIF和贴纸库,GIPHY与领先的移动短视频平台TikTok达成合作,旨在通过人工智能技术驱
10月30日,据多家媒体报道,大运集团旗下高端新能源品牌远航汽车被自家员工曝出人员流失较为严重、延迟发放工资等情况。有自称是远航汽车研发部人士表示,底盘研发部门人员流失速度快,目前仅剩十余名员工坚守岗
国芯网[原:中国半导体论坛] 振兴国产半导体产业!   不拘中国、放眼世界!关注世界半导体论坛↓↓↓10月31日消息,荣耀引入了中国电信、中金资本旗下基金、基石旗下基金、特发基金,以及新一轮代理商投资
市场传出消息称,国内模拟IC上市公司思瑞浦(3PEAK)近日解散了其MCU团队。预计约80名员工受影响,其中一些员工曾是2022年德州仪器裁撤的中国区MCU研发团队的成员。据称,MCU整个部门调整,包