为了克服CPU和GPU的限制,为人工智能推理工作负载专门设计的创新型硬件加速器,可实现高效和优化的处理,同时最大限度地减少能耗。

人工智能行业所围绕的是一个受技术进步、社会需求和监管政策影响的动态环境。机器学习、自然语言处理和计算机视觉方面的技术进步,加速了人工智能的发展和应用。包括医疗保健、金融和制造业在内的各个行业对自动化、个性化和效率的社会需求,又进一步推动了人工智能技术的集成。此外,不断发展的监管体系,则强调了合乎伦理道德的人工智能、数据隐私和算法透明度的重要性,进而指导人工智能系统的负责任开发和应用。

人工智能行业将训练和推理过程结合起来,有效地创建和部署人工智能解决方案。推理和训练都是人工智能整个生命周期的组成部分,其意义取决于具体的环境和应用。对于通过学习模式和从数据中提取见解来开发和优化模型而言,虽然训练极为重要,但推理在利用这些训练模型进行实时预测和决策方面,却发挥着极为重要的作用。人工智能推理(占当今人工智能任务的80%以上)的重要性越来越大,在于它在推动数据驱动的决策、个性化用户体验和不同行业的运营效率方面发挥着关键作用。

高效的人工智能推理实现,则面临着数据可用性、计算资源、算法复杂性、可解释性和法规符合性方面的挑战。而在控制成本的同时,适应动态环境和管理可扩展性,还又带来额外的挑战。克服这些挑战需要全面的战略,包括稳健的数据管理实践、硬件功能的进步和算法的改进。开发可解释的人工智能模型,并遵守道德和监管准则,对于建立用户信任和确保合规性至关重要。此外,通过高效的运营实践与技术创新来平衡资源分配与成本管理,对于在不同行业部门实现可持续有效的人工智能推理解决方案也极为重要。

人工智能推理的关键作用

通过自动化任务、增强预测性维护和启用高级分析,人工智能推理优化了流程,减少了错误,改善了资源分配。对于自然语言处理,人工智能推理提供了动力,改善了人与机器之间的沟通与理解。而在制造业领域,其影响包括预测性维护、质量控制和供应链管理、提高效率、减少浪费和提高产品质量,对行业运营具有变革性影响。

可持续人工智能推理的行业挑战

人工智能推理面临着高能耗、密集的计算需求和实时处理限制等挑战,导致运营成本增加,还加剧了对环境的影响。人工智能总功耗的60%以上来自推理,随着推理需求的增加,导致数据中心容量在两年内增加了2.5倍(GAFA数据)。对于服务器来说,密集计算过程中产生热量,还需要复杂的冷却系统,这又进一步增加了人工智能过程的总体能耗。此外,在服务器、高级驾驶员辅助系统(ADAS)或制造应用中,必须在满足高效实时处理需求与低延迟要求之间取得平衡,这也是一个重大挑战,需要先进的硬件设计和优化的计算策略。在不影响准确性的情况下,优先考虑可再生能源和环保举措的节能解决方案,对于减轻环境影响而言,是非常重要的。

由于人工智能算法的复杂性和特殊性,利用CPU或GPU的经典人工智能推理硬件设计,在实现能效方面面临限制,导致高功耗(服务器每个多核单元功耗高达数百瓦)。处理单元与存储器之间低效的数据移动,进一步影响了能源效率和吞吐量。例如,相对于访问本地寄存器,访问外部DRAM会消耗200倍的能量。最终,由于更高的计算需求,到2025年,利用CPU和GPU的下一代服务器,可能会消耗高达上千瓦的功率。而在资源受限、电池供电的设备上部署人工智能推理更具挑战性,因为最高效的基于CPU和GPU的低功耗设计(10毫瓦到几瓦)受到吞吐量的极大限制,从而限制了人工智能的复杂性和最终的用户体验。平衡能源效率与性能/精度要求,在设计过程中需要仔细权衡,并采用全面的优化策略。对复杂人工智能工作负载的硬件支持不足,可能会阻碍其能效和性能。

寻找节能解决方案

行业对节能人工智能推理解决方案的需求不断增长,这是由可持续发展目标、成本降低目标和新用途共同驱动的。企业寻求可扩展和高性能解决方案,来管理复杂的人工智能工作负载,而不会产生过高的能源成本。另一方面,节能的人工智能推理,使得移动设备或资源受限的设备能够在不快速消耗电量的情况下执行复杂任务,同时减少对云处理的依赖,最大限度地减少数据传输和延迟问题。通过高级新功能,如实时语言翻译、个性化推荐和准确的图像识别,有助于增强用户体验,提高用户参与度和满意度。

人工智能推理领域里的创新贡献

为了克服CPU和GPU的限制,为人工智能推理工作负载专门设计了创新型硬件加速器,实现高效和优化的处理,同时最大限度地减少能耗。人工智能应用中,此类加速器通过采用专用运算符(池化、激活功能、规范化等)来实现优化的数据流。数据流引擎是矩阵乘法单元,这是一个大型处理元件阵列,能够有效地处理大型矩阵向量乘法、卷积和许多更复杂运算。大多数神经网络都是基于矩阵乘法运算的。

为了进一步优化能源效率,人工智能加速器已经实现了一些新技术,如近内存计算。近内存计算将处理单元集成在内存子系统中,从而实现更快的近内存数据处理,从而减少与数据传输相关的能耗。最近,又出现了采用“非标准”技术的一些新解决方案,如存内计算或尖峰神经网络(SNN)。要实现高效能人工智能推理,这些都是最具吸引力的解决方案。

存内计算直接在内存中进行电路级计算,免去了数据传输,提高了处理速度。处理可以以模拟或数字方式进行,可利用不同的存储技术,如SRAM、闪存或新的NVM(RRAM、MRAM、PCRAM、FeFET等)。这种方案特别有利于涉及大型数据集的复杂人工智能任务。SNN还代表了人工智能推理的一种创新解决方案:它们通常由通过尖峰进行通信的互连节点组成,能够模拟复杂的时间过程和基于事件的计算,这对于处理时间敏感数据或模拟人脑行为等任务很有用。

塑造人工智能推理的未来

利用近内存/存内计算或SNN的人工智能加速器对人工智能行业产生了重大影响,包括提高能源效率、提高处理速度和先进的模式识别能力。这些加速器推动硬件设计的优化,从而为特定的人工智能工作负载创建专门的架构。此外,它们还促进了边缘计算的进步,促进了直接在边缘设备上进行高效的人工智能处理,并减少了延迟。这些技术的变革潜力,凸显了其在从医疗保健、制造业、汽车到消费电子等不同行业的革命性变革中的关键作用。

高能效人工智能推理在医疗保健和汽车行业的集成产生了变革性的影响。在医疗保健领域,通过快速数据分析促进了更快的诊断和个性化的患者护理,从而改善了治疗效果和量身定制的医疗干预措施。此外,它还赋能开发远程患者监测系统,确保对慢性病患者进行持续的健康跟踪和积极干预。还有,在药物研发领域,高效人工智能推理加快了潜在候选药物的识别,加速了药物研发过程,促进了医疗和疗法的创新。

在汽车行业,节能的人工智能推理在提升安全功能和自动驾驶能力方面也发挥着至关重要的作用。它为车辆提供ADAS和实时碰撞检测功能,增强整体道路安全。此外,它有助于自动驾驶技术的发展,使车辆能够根据实时数据分析做出明智决策,从而改进导航系统和自动驾驶功能。此外,基于人工智能推理的预测性维护解决方案,能够早期检测潜在的车辆问题、优化性能、减少停机时间并延长车辆寿命。

结论

行业对节能人工智能推理解决方案的主要需求,是由促进可持续运营、优化资源利用和延长设备电池寿命的需求驱动的。这些解决方案在促进环保实践、降低运营成本和增强竞争优势方面发挥着关键作用。节能人工智能推理解决方案中,通过促进边缘计算应用,并最大限度地减少能源消耗,使企业能够提高盈利能力、简化流程、并确保移动和物联网设备功能的不间断。要满足这些需求,就必须开发大量基于智能近内存/存内计算技术的节能算法,并优化硬件架构。许多新公司带着创新的计算解决方案进入市场,并承诺在从传感器到数据中心的任何地方运行人工智能,以提供全新的用户体验。

(原文刊登于EE Times欧洲版,参考链接:Revolutionizing AI Inference: Unveiling the Future of Neural Processing,由Franklin Zhao编译。)

本文为《电子工程专辑》2024年4月刊杂志文章,版权所有,禁止转载。免费杂志订阅申请点击这里

责编:Franklin
本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
阅读全文,请先
您可能感兴趣
新款开发板售价仅为249美元,而上一代40 TOPS开发板售价为499美元,价格仅为上一代的一半。这使得Jetson Orin Nano Super成为“世界上最经济实惠的生成式AI计算机”,特别适合商业AI开发者、爱好者和学生使用。
近年来,AWS还积极投资于人工智能(AI)、机器学习(ML)、大数据分析和边缘计算等前沿技术,以保持其在这些领域的竞争优势。
通过机器学习技术,EDA工具可以获取更精确的模型来预测设计中存在的问题,如布线拥塞、信号干扰、热效应等,从而为用户提供更准确快速的指导,避免后期返工。
这一新规则可能会引起美国在世界各地的合作伙伴和盟友的重大担忧,以及一些国家的不满,担心美国会充当单方面仲裁者,决定谁可以获得对AI至关重要的先进芯片。
谷歌认为,这种独家协议可能会限制市场竞争,导致其他公司无法自由地使用OpenAI的技术,从而增加了用户面临额外成本的风险,比如数据迁移和员工培训等。
有鉴于电动汽车、自动驾驶和人工智能业务等未来增长潜力,以及在马斯克在当选总统特朗普政府中的“特殊地位”,多家分析机构认为,马斯克的财富未来还将进一步增长。
目前,智能终端NFC功能的使用频率越来越高,面对新场景新需求,ITMA多家成员单位一起联合推动iTAP(智能无感接近式协议)标准化项目,预计25年上半年发布1.0标准,通过功能测试、兼容性测试,确保新技术产业应用。
中科院微电子所集成电路制造技术重点实验室刘明院士团队提出了一种基于记忆交叉阵列的符号知识表示解决方案,首次实验演示并验证了忆阻神经-模糊硬件系统在无监督、有监督和迁移学习任务中的应用……
C&K Switches EITS系列直角照明轻触开关提供表面贴装 PIP 端子和标准通孔配置,为电信、数据中心和专业音频/视频设备等广泛应用提供创新的多功能解决方案。
投身国产浪潮向上而行,英韧科技再获“中国芯”认可
今日,长飞先进武汉基地建设再次迎来新进展——项目首批设备搬入仪式于光谷科学岛成功举办,长飞先进总裁陈重国及公司主要领导、嘉宾共同出席见证。对于半导体行业而言,厂房建设一般主要分为四个阶段:设备选型、设
‍‍12月18日,深圳雷曼光电科技股份有限公司(下称“雷曼光电”)与成都辰显光电有限公司(下称“辰显光电”)在成都正式签署战略合作协议。双方将充分发挥各自在技术创新、产品研发等方面的优势,共同推进Mi
对于华为来说,今年的重磅机型都已经发完了,而明年的机型已经在研发中,Pura 80就是期待很高的一款。有博主爆料称,华为Pura 80将会用上了豪威OV50K传感器,同时电池容量达到5600毫安时。至
来源:IT之家12 月 18 日消息,LG Display 韩国当地时间今日宣布,已将自行开发的“AI 生产系统”投入到 OLED 生产线的日常运行之中,该系统可提升 LG Display 的 OLE
12月18 日,据报道,JNTC与印度Welspun BAPL就车载盖板玻璃的开发及量产签订了投资引进业务合作备忘录(MOU)。资料显示,JNTC是韩国的一家盖板玻璃厂商。Welspun的总部位于印度
阿里资产显示,随着深圳柔宇显示技术有限公司(下称:“柔宇显示”)旗下资产一拍以流拍告终,二拍将于12月24日开拍,起拍价为9.8亿元。拍卖标的包括位于深圳市龙岗区的12套不动产和一批设备类资产,其中不
近期,高科视像、新视通、江苏善行智能科技等企业持续扩充COB产能。插播:加入LED显示行业群,请加VX:hangjia188■ 高科视像:MLED新型显示面板生产项目(二期)招标12月18日,山西高科
在上海嘉定叶城路1688号的极越办公楼里,最显眼的位置上,写着一句话:“中国智能汽车史上,必将拥有每个极越人的名字。”本以为这句话是公司的企业愿景,未曾想这原来是命运的嘲弄。毕竟,极越用一种极其荒唐的
在科技浪潮翻涌的硅谷,马克·扎克伯格不仅是“脸书”帝国的掌舵人,更是以其谦逊低调的形象,在公众心中树立了独特的领袖风范。然而,在镁光灯难以触及的私人领域,扎克伯格与39岁华裔妻子普莉希拉·陈的爱情故事
上个月,亿万富翁埃隆·马斯克谈到了年轻一代的生育问题。他强调生育的紧迫性,认为无论面临何种困难,生育后代都是必要的,否则人类可能会在无声中走向消亡。他认为人们对于生育的担忧有些过头,担心经济压力等问题