随着无线通信的发展,频率资源越来越稀缺。凭借丰富的频谱,太赫兹频段受到业界的青睐,并将可能成为未来6G通信的首选。但面临的巨大挑战是,如何开发出该频段所需的元器件。本文所介绍的一种新型超材料器件,利用微观级别的射频场,通过控制器件内部的电场,实现了自然界中通常无法实现的卓越性能。

人们一直在尝试使用更高端的电磁频谱并发挥其带宽潜力,而首当其冲的自然就是利用太赫兹频段开展大规模应用,比如用于尚处萌芽中的6G标准。业界一般认为,该频段的范围为0.1~10THz(3000~30μm),介于毫米级射频和红外频率之间。

自由空间(无任何多径传播的空间)中,1THz信号的波长为300μm,周期为1ps。需要注意的是,太赫兹频段还有其他几个名称,如亚毫米、远红外线和近毫米波(这么多的叫法有时候的确会让人感到有些困惑)。

为太赫兹频段开发元器件极具挑战性,因为这类器件将工作在一个特殊的频段中,该频段位于通常的射频能量域(“电子”)的最高端之上方,到极为不同的光能域(“光子”)之下方,具体如图1所示。虽然所有频谱在理论上都受麦克斯韦方程的约束,但现实应用和面临的实际问题使得这段频谱与其它频谱有很大不同。

图1:电磁波谱是连续的。不过,介于 “射频”和光学之间的这一频段,即业界通常所说的太赫兹频段,却具有一些独特的特征和挑战性。资料来源: 捷克科学院物理研究所电介质部

太赫兹电子

太赫兹频段已经在一些特殊应用中得到了一定的使用,比如可以看到表面下方或穿过墙壁的扫描仪,甚至是一些医疗应用。但由于校准和其他问题,这些系统都很复杂,成本也很高,而且还难以使用。因此,从许多方面看,太赫兹频段都是一个非常具有挑战性和挑剔的频段。不过,凡事皆有两面。

开发所需的太赫兹元器件,有两种主要解决方案。一种方案是继续缩小现有的高吉赫兹有源和无源元器件,但对这一方案在物理学、材料学、以及现实生产中,都遭遇到了很大的阻力。另一种方案是增大固态片上光学元器件的工作波长,从上方进入该频段。

前一种方案的成功可能性非常有限,而后一种方案则稍好一些。但不管是哪种方案,都非常艰难,进展甚微;而且如何解决所需的测试问题,也是一个不小的挑战。

现在,第三种方案正在获得越来越多研究者的青睐,并获得了一些成功。这种方案就是采用已经在一些光学元器件中使用的超材料器件(metadevice)。这种超器件利用的是微观级别的射频场,因此具有优异的电子特性。其中大部分的物理制造,利用的都是高端半导体技术,但基板使用的是铌酸锂等材料。

这些深亚波长尺寸的超器件,在集合式电磁相互作用的静电控制基础上工作,可以作为控制传统器件(比如二极管和晶体管)中电流的一种替代产品。这些超材料可以提供自然界中没有的功能,例如以意想不到的方式使光线弯曲的能力。光学超材料通常采用具有重复图案的结构,其尺寸小于受它们影响的光波长。

超器件的表征

瑞士联邦理工学院(ETH Zurich)向业界展示了所取得的进展,以及他们的解决方案(见发表在《自然》杂志上的文章《用于太赫兹应用的电子超器件》)。他们的策略成就了一类新的电子器件,这些器件具有远远超过10THz的截止频率,创纪录的高电导值,极高的击穿电压和皮秒级的开关速度,而这些都是相关器件和电路的关键要素。

所开发的结构尺寸,比他们之前开发的用于控制的波浪集合式电磁相互作用结构还要小。他们在一个由氮化镓和氮化铟制成的半导体上,成功蚀刻出了亚波长间距的接触超结构图案。通过控制器件内部的电场,这些超结构可以产生自然界中无法实现的卓越特性(见图2)。

图2:与先进的物理学概念不同,超结构提供了一种在深亚波长级别上,对集合式电磁相互作用结构进行静电控制的方法。资料来源:Research Gate

接下来是如何对该器件进行测试。他们通过测试给出了0.75-1.1THz频段内的复合散射参数(见图3)。

图3:利用一个看似简单、但实际却极其复杂的测试方案,来评估0.75-1.1THz频段的性能。资料来源:Research Gate

除了器件表征外,他们还将连续波(CW)太赫兹信号注入了图4所示调制器的右侧端口。反射波是太赫兹载波上的数据信号,用相干接收器进行接收。由于接收到的是具有四个不同载波频率的调制信号,因此通道之间的串扰几乎为零。

图4:该团队还搭建了一个调制器,可以处理四个间距极小的载波、并具有最低的串扰。资料来源:Research Gate

另外,图4所示结果也表明,在大规模通信网络中,超器件调制器也具有超密集分配通道的潜力。

(参考原文:metadevices-may-fill-the-terahertz-component-gap

本文为《电子工程专辑》2023年9月刊杂志文章,版权所有,禁止转载。点击申请免费杂志订阅

 

 

责编:Jimmy.zhang
本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
阅读全文,请先
您可能感兴趣
苹果自研5G基带芯片的推出标志着其在移动通信技术领域的重要进展,旨在减少对高通等外部供应商的依赖。不过,“Sinope”仅支持四载波聚合,并且不支持5G毫米波。
UWB技术的精准定位需要与支付系统的安全性相结合。此外,UWB无感支付需要解决多人同时通过闸机时的精准识别问题,以及防止插队和误扣费等情况。
在华为Mate品牌盛典上,除了备受瞩目的Mate 70系列手机外,华为还推出了两款高端新品——HUAWEI WATCH ULTIMATE DESIGN非凡大师系列手表和尊界S800豪华轿车。这两款产品以其卓越的设计和性能,再次彰显了华为在高端市场的雄心。
在11月26日的华为Mate品牌盛典上,华为Mate 70系列正式亮相。余承东表示,Mate一直被模仿从未被超越,“不断创新才能引领行业,靠抄袭是没有未来的,能超越Mate的只有Mate!”
近期,国内射频芯片上市公司慧智微电子被曝出大规模裁员的消息,其中研发人员裁员比例高达40%,赔偿方案为N+1。此次裁员行动迅速且果断,涉及上海和广州分公司……
API可是5G网络的重要桥梁,能让软件间无缝通信和协作。诺基亚这次收购后,其5G和4G网络业务营收有望大幅提升,竞争力也会更强。
目前,智能终端NFC功能的使用频率越来越高,面对新场景新需求,ITMA多家成员单位一起联合推动iTAP(智能无感接近式协议)标准化项目,预计25年上半年发布1.0标准,通过功能测试、兼容性测试,确保新技术产业应用。
中科院微电子所集成电路制造技术重点实验室刘明院士团队提出了一种基于记忆交叉阵列的符号知识表示解决方案,首次实验演示并验证了忆阻神经-模糊硬件系统在无监督、有监督和迁移学习任务中的应用……
C&K Switches EITS系列直角照明轻触开关提供表面贴装 PIP 端子和标准通孔配置,为电信、数据中心和专业音频/视频设备等广泛应用提供创新的多功能解决方案。
投身国产浪潮向上而行,英韧科技再获“中国芯”认可
今日,长飞先进武汉基地建设再次迎来新进展——项目首批设备搬入仪式于光谷科学岛成功举办,长飞先进总裁陈重国及公司主要领导、嘉宾共同出席见证。对于半导体行业而言,厂房建设一般主要分为四个阶段:设备选型、设
‍‍12月18日,深圳雷曼光电科技股份有限公司(下称“雷曼光电”)与成都辰显光电有限公司(下称“辰显光电”)在成都正式签署战略合作协议。双方将充分发挥各自在技术创新、产品研发等方面的优势,共同推进Mi
投资界传奇人物沃伦·巴菲特,一位94岁的亿万富翁,最近公开了他的遗嘱。其中透露了一个惊人的决定:他计划将自己99.5%的巨额财富捐赠给慈善机构,而只将0.5%留给自己的子女。这引起了大众对于巴菲特家庭
12月18日,珠海京东方晶芯科技举行设备搬入仪式。插播:加入LED显示行业群,请加VX:hangjia188在10月31日,珠海京东方晶芯科技有限公司发布了Mini/Micro LED COB显示产品
万物互联的时代浪潮中,以OLED为代表的新型显示技术,已成为人机交互、智能联结的重要端口。维信诺作为中国OLED赛道的先行者和引领者,凭借自主创新,实现了我国OLED技术的自立自强,成为中国新型显示产
“ 洞悉AI,未来触手可及。”整理 | 美股研究社在这个快速变化的时代,人工智能技术正以前所未有的速度发展,带来了广泛的机会。《AI日报》致力于挖掘和分析最新的AI概念股公司和市场趋势,为您提供深度的
阿里资产显示,随着深圳柔宇显示技术有限公司(下称:“柔宇显示”)旗下资产一拍以流拍告终,二拍将于12月24日开拍,起拍价为9.8亿元。拍卖标的包括位于深圳市龙岗区的12套不动产和一批设备类资产,其中不
在上海嘉定叶城路1688号的极越办公楼里,最显眼的位置上,写着一句话:“中国智能汽车史上,必将拥有每个极越人的名字。”本以为这句话是公司的企业愿景,未曾想这原来是命运的嘲弄。毕竟,极越用一种极其荒唐的
今天上午,联发科宣布新一代天玑芯片即将震撼登场,新品会在12月23日15点正式发布。据悉,这场发布会联发科将推出全新的天玑8400处理器,这颗芯片基于台积电4nm制程打造,采用Arm Cortex A
上个月,亿万富翁埃隆·马斯克谈到了年轻一代的生育问题。他强调生育的紧迫性,认为无论面临何种困难,生育后代都是必要的,否则人类可能会在无声中走向消亡。他认为人们对于生育的担忧有些过头,担心经济压力等问题