大气等离子体或常压等离子体源所产生之化学物质、离子和辐射甚至是电场,对于物质表面的修饰、整体的反应与掺杂皆有显著的影响与效果,造就其在各种材料的制程、生化或微制造领域皆有诸多的应用。大气等离子体不需固定或密闭式的腔体,受测物品尺寸不受限于腔体大小,且还具多项优点例如设备与操作成本低、操作速度快、可适用于连续式的制程操作、容易与其他的设备相结合而大幅提升生产效率等,目前已是产业界积极研究的题目之一。利用大气等离子体技术的介电质放电等离子体制程,可制造出大气等离子体活化水,展现其在农业育苗的潜力,将有机废弃物再利用为水溶性氮肥料,开启循环农业的新视野。
等离子体是什么?
对于整个宇宙来讲,几乎99. 9%以上的物质都是以等离子体形态存在,如恒星和行星际空间等都是由等离子体体所组成。等离子体体可由人工方法产生,如核聚变、核裂变、辉光放电等各种放电方式。
分子或原子的内部结构主要由电子和原子核组成,电子与原子核之间的关系比较固定,电子以不同的能级存在于核场的周围,其势能或动能不大,但当物质受到外加能量(例如磁、电、热)作用后,原子中的外层电子势能急速下降,最后脱离核场的束缚而逃逸到远处,即所谓的电离。此时原子变为两个带电荷的粒子,即带负电荷的电子和带正电荷的离子。若所有组成物质的分子或原子被完全电离成离子和电子(图1),就改变了原来的形态,成为物质的第四种形态—等离子体。
等离子体态主要由气体在高电、磁场下离子化所形成的集合,其中包括电子、正离子与中性分子。等离子体态物质具有极高的活性及能量,连带激发一系列连锁反应,包含离子化、激发、再结合、解离与电荷转移等。利用高能量可裂解气体的特性,等离子体制程产生无限的可能性,由于其高能量密度及反应特性,人们开始将等离子体应用于各产业当中。
等离子体处理被应用在多个领域,产生等离子体的条件也十分广泛,应用领域、设备费用和气体压力需求如图2所示,不难发现在半导体、磁介质与建筑玻璃中使用的特种薄膜等制程,需要在设备成本高且高真空的环境下进行,也就是真空等离子体的作用领域,不过这仅是等离子体表面处理技术应用中的一部分。受到制程费用的限制,在水处理工业、食品加工领域,都对等离子体处理望而却步;工业清洁和食品加工方面,也受到真空制程气体压力的限制,无法应用等离子体处理。由此可见,若能将等离子体处理技术改为常压环境下即可工作,便能提高应用空间[2]。
一般的真空等离子体处理成本高昂、设备复杂,而常压等离子体则无需真空腔体及真空系统匹配,在常压环境下即可进行,具有更多潜在应用可能,例如水和污水处理领域。另外,常压等离子体加工成本低、处理速度快,因此在食品加工业也具有应用潜力。综上所述,与真空等离子体相比,常压等离子体处理具有更广泛的应用领域及更突出的应用潜质。
介电式大气等离子体的原理和结构
在大气等离子体的设计上,有介电质屏蔽放电(Dielectric Barrier Discharge,DBD)、电晕放电(Corona Discharges)等型式,但由于电晕放电的处理效果弱、且电极容易被破坏,而限制了此技术的拓展,故以下介绍将以DBD为主。
介电质放电又称无声放电(Silent Discharge),即两电极之间放入一到两个介电质材料(通常为玻璃、石英或陶瓷),当施予高电压时,等离子体会产生于电极与介电质材料、或两个介电质材料之间的缝隙。在两电极之间引入一介电层,整个装置将由电容偶合(Capacitive Coupling)的方式进行电路匹配,由于介电层的引入,介质屏蔽放电不能使用直流电源,通常可选择脉冲式直流、射频或微波电源供应。介质屏蔽放电等离子体基本结构示意图如图3,介质屏蔽放电有平板、圆柱状的形式,平板状能够针对大面积材料进行表面改质,圆柱状则能产生较高密度的激发粒子。
介质屏蔽放电通常由正弦波型(Sinusoidal)的交流(Alternating Current,AC)高压电源驱动,随着供给电压的升高,系统中反应气体的状态会经历三个阶段的变化,即由绝缘状态(Insulation)逐渐至击穿(Breakdown),到最后发生放电。当供给的电压较低时,有些气体会有一些电离和游离扩散,但因含量太少、电流太小,不足以使反应区内的气体出现等离子体反应,此时的电流为零。
随着供给电压逐渐提高,反应区域中的电子也随之增加,但未达到反应气体的击穿电压(Breakdown Voltage; Avalanche Voltage),此时两电极间的电场较低,无法提供电子足够的能量来让气体分子进行非弹性碰撞,此将导致电子数无法大量增加,因此反应气体仍为绝缘状态、无法产生放电,此时电流随着施加的电压提高略有增加,但几乎为零。
若继续提高供给电压,当两电极间的电场大到足够使气体分子进行非弹性碰撞时,气体将因为离子化的非弹性碰撞而大量增加,当空间中的电子密度高于一临界值(即Paschen击穿电压时),便会产生许多微放电丝(Microdischarge)导通在两极之间,同时系统中可明显观察到发光(Luminous)的现象,此时电流会随着施加的电压提高而迅速增加。
Paschen's Law提供气体崩溃电压、放电气体压力及两电极距离的关系:
V = APd / ln(Pd)+B …………………………. (1)
其中,P为放电气体压力,d为电极间距离,A、B为随气体种类而异的常数。按此式,当P d值变大时,气体崩溃电压与P d值成正比;P*d值变小时,即会出现一Vmin值,低于此Vmin值的气体不会发生崩溃。图4为常见气体之Paschen曲线[4]。
介电质屏蔽放电等离子体——产生的形式与结构
介质屏蔽放电能在常压和很宽的频率范围内工作,通常工作气压为1~10大气压,电源频率可从50Hz~1MHz。如前文所提,介质屏蔽放电的基本结构,有着各式各样的电极设计形式,可针对不同的应用,设计出不同的DBD电极结构,来提升等离子体处理效率。主要分为三种变形:平板式阵列、圆柱式等离子体束及圆柱等离子体束阵列。
1.平板式阵列
一般电极直接与等离子体接触,等离子体中的高能粒子会对蚀刻电极表面造成电极消耗。为了因应以上问题,开发出介质屏蔽放电等离子体产生装置,在两电极之间引入一介电层。由于介电层的引入,可以限制电流的大小,抑制电弧的产生。此外,整个装置由电容偶合(Capacitive Coupling)的方式进行电路匹配,因此介质屏蔽放电不能使用直流电源。一般来说会选择使用脉冲式直流、射频亦或微波电源供应方式,如图5。
2.圆柱式等离子体束
等离子体束为一应用广泛的电极设计,如图6所示,此设计可处理各种形式的材料,无论固体或液体都可以利用等离子体束处理。等离子体束的优势在于可以产生高密度的激发粒子,针对表面进行强而有效的等离子体处理,同时产生等离子体的温度低、以热的形式散出的能量较少。
3.圆柱等离子体束阵列
图7将等离子体束排列成阵列的形式,以提高其处理效率[9-11]。此法从水面下方通入空气产生气泡,并在气泡通过电极时在气泡内部点起等离子体,最终气泡漂浮至水面、并在漂浮过程中和水完成反应,以避免活性物质逸散在空气中,达到最大的处理效率。
在实际应用中,圆柱或管式的电极结构被广泛地套用于各种化学反应器中,而平板式电极结构则被套用于工业中的板材、粉体的改性、高分子接枝、金属薄膜、表面张力的提高与清洗、亲水改性中。
常压等离子体的优势与瓶颈
若能在人类所处的常温常压环境下产生等离子体,将会是经济又高效能的技术,可免去诸多维持高真空的系统,如腔体、泵等,同时也节省了维护的成本与时间。因无腔体的限制,也相对减少了尺寸的局限,且制程容易进行连续性操作,能大幅提升处理效率,此外,友善环境的特点更是引人入胜,不仅只需利用周遭空气便能激发等离子体,甚至可分解污染环境的物质,成为无污染性之气体,是将来避免环境危机极具潜力的技术之一。
等离子体的产生须有足够的能力来激发反应,在电子吸收电场的能量后,若能量足够,将与碰撞的气体分子产生解离,同时电子数目随之增加,而新生电子将再产生类似之反应,形成连锁反应。然而在压力为一大气压时,气体分子众多以致碰撞相当频繁,此时气体的平均自由程(气体分子有效碰种之间距)相当小,能量难以累积,以至于等离子体难以激发。因此,解决的方法主要有两种:
(一) 提高外加电源的电位;
(二) 增加通路的电流。
以上两种思维都是提升输入的能量,然而如何在提升能量供应的同时,建立低成本且高效率的常压等离子体技术,即为学者们致力研究的议题。
等离子体农业
农业领域在新科技的导入常是较缓慢的一块,然而近年因气候变迁,使人们警觉到粮食生产的隐忧,特别是传统农业本身对环境即有一定的伤害。然就农业生产而言,氮成分是相当重要的生产要素之一,尤其是在土壤贫瘠的区域,使用氮肥是农民赖以作为控制增加产出的生产模式。然而追求大量产出、未予合理使用氮素肥料,以致过度投入氮肥生产,造成各种氮化物过量残留于环境,将破坏地球的生态与氮循环。未来该如何确保稳定的粮食供给、永续经营,并加速改进农业施肥技术,将是重要课题。作者实验室运用空气导入大气等离子体系统,以固氮的观念,将环境空气中的氮转化为肥料,优化并提供环境氮循环另一理想途径。以下将对当今肥料的问题、大气等离子体导入肥料制造的应用,做进一步的介绍。
传统耕作方式(土耕)使用化学肥料对环境的影响
到目前为止,世界上化学工业产品的第一大宗应该仍是化学肥料。依据统计,全球2019~2023年整体有机肥料市场规模将成长13.6亿美元,年复合成长率(Compound Annual Growth Rate,CAGR) 高达14%,比2019年成长了14.01%。全球有机肥市场销售每年250~300万吨,预估日后将超过300亿美元,其中亚洲市场需求最大,约占全球使用量的41%,如图8。因欧洲无土栽培生鲜蔬果,水溶性肥料市场需求最大,约占全球使用量的33%,规模将成长39.7亿美元,年复合成长率为6%,如图9,这样庞大的化肥市场也间接造成环境污染。
现代农业要求作物的单位面积产量要高、产品品质要好,为达此目的,农地的物理条件和养分供应,须能充分满足作物的需求。物理条件靠耕耘,养分供应则靠土壤肥力、施肥和灌溉,但几乎所有耕地土壤中的养分都缺乏氮,养分的补充通常只有施用化学肥料才能确实做到,若没有化学肥料就无法实现现代农业。近世纪以来,化学肥料也促成了大量高品质食品生产,使人类的寿命得以普遍延长[14]。然而在传统土壤耕作开放式的农业活动中,尿素是目前最常用的氮素肥料,其易溶于水,在土壤中很快被水解成氨,氨又快速被氧化成硝酸。要减缓这些反应,常将尿素进行颗粒粗化,或添加硝化抑制剂,增加肥料被作物吸收利用的效率。然不可避免剩下许多养分,施用越多对环境的冲击越大。据统计,仅20%~50%的肥料会被作物吸收,如图10所示,其余过量的氮磷营养盐会经由雨水流入河川、湖泊,污染水质和环境[15]。
图10:农业造成的污染[16]。
环保的耕作方式——封闭循环式的无土栽培
传统的土壤耕作属于开放型的农业,欲做到精准施肥、有效控制化肥流失实属不易。而无土栽培多为封闭的系统,可以精准补充植物所需的营养。一般以化学液态肥料的补充方法有以下几种:
根据化验了解营养液的浓度和水平,先化验营养液中NO3 –的减少量,按比例推算其他元素的减少量,然后加以补充,使营养液保持应有的浓度和营养水准。
从减少的水量来推算。先调查不同作物在无土栽培中水分消耗量和养分吸收量之间的关系,再根据水分减少量推算出养分的补充量,加以补充调整。
从实际测定的营养液的电导率值变化来调整,这是生产上常用方法。根据电导率与营养液浓度的正相关性,再通过测定工作液的电导率值,就可计算出营养液浓度,据此再算出需以化学物质补充的营养液量。
大气等离子体水中含有对植物生长有益的成分?
以大气等离子体技术,运用自然环境的空气和水资源,可产生植物生长所需要的肥料,包含氮态、氨态等活性物质,促进植物生长、刺激作物发育。按植物生长时所需的重要养分素来源而言,氮肥为最重要的元素,其组成主要为NH4 +、NO3 –,其中作物吸收又以NO3 –较佳。在植物的生长的过程中,这些分子扮演重要反应和新陈代谢的讯号因子,植物在这些离子摄取不足时,发育缓慢且生长情况不佳。作者实验室团队利用自行设计的等离子体喷流注入空气、产生等离子体水溶液(Plasma-Activated Water,PAW),并以离子剂分析证实上述的关键氮肥得以有效地制造出,反应机制如图11所示。
图11:等离子体水溶液反应机制。
透过进一步透过调控制程的参数、处理时间,浓度可被精准地控制在一个范围内。如图12所示,不同pH的水以大气等离子体处理转化成等离子体水,其中图12 (a)处理时间为0 代表未经等离子体处理之原始水。可以发现随着等离子体处理的时间成长,对植物生长发展有益的氮肥料浓度(NO3 – )亦随之增加。图13 (b)亦显示所产生的NO3 –在水中有相当的稳定性,可在水中保持一定的浓度达数天以上。
图12:不同pH之水以(a)不同大气等离子体处理时间产生之NO3 –浓度及(b)以大气等离子体处理15分钟后,静置数天后的浓度变化[17]。
此外,在等离子体处理的过程中,过氧化氢(H 2 O 2 )也同时反应生成,如图13所示。在农艺的发展上,双氧水有促进发芽之功效,且对大多数的细菌、病毒和真菌都能产生清除的效果,进而提升植物成长的良率。
以大气等离子体处理15分钟之等离子体水,实际作为莴苣育苗灌溉,结果如图14所示,可明显观察到相较于自来水,灌溉水经过等离子体处理,幼苗发展的速度可由9天大幅缩短至5~6天,大幅提升农业育苗的效率。
另一个研究案例[18],是以如前段介绍的平板式阵列等离子体干式处理冰花菜种子,使用之等离子体结构如图15所示。冰花菜是高价值的作物,经由通入氮气在30~180秒(N30 至N180)等离子体处理的研究中,60秒的处理具有最高的发芽率,从60%提升至75%。经由傅立叶转换红外线光谱仪(FTIR)的分析,如图16,发现在60秒处理之种子表面产生NH的振动键结(~3,340cm-1),其也代表着种子获得额外的养分,因此有最高的发芽率。而太长时间的处理则因部分种子的表面被破坏,发芽率下降至67%。
由以上两研究案例可知,大气等离子体不论以湿式或干式处理种子,对于种子发芽的提升皆有相当的助益。
运用大气等离子体水和废弃有机资材快速生成有机肥
若能以有机肥取代/部分取代化肥,对于环境的氮循环将有更大的助益。广义的有机质肥料包括所有自然生物体,其在土壤内引起土壤的物理、化学及生物性及其衍生物,待生物体死亡后进入土壤内或土壤表面、被微生物所分解,将所含之植物养分释放、被其他植物吸收利用。早期化学肥料尚未普及以前,环境中能取得的有机资材就是施肥的唯一物料。哈伯法之后的化学肥料因价格便宜、肥效迅速、体积小、施用方便,因此大量取代了有机资材的使用。不过有机质肥料具环保的优点,不仅能循环利用地球的有限再生及非再生资源,还可节能减碳,进而改善环境品质、增进人类粮食生产,与地球永续的重要课题紧紧相连。
图17为现行传统的堆肥化制程,运用微生物把堆肥材料转化成堆肥的生物化学过程。决定这个过程的因素包含:堆肥材料的微生物营养性状、材料中的水分活性、堆肥化过程中的碱性度、好气性的状态维持度。接种大量的堆肥化菌群可创造对堆肥化有利的条件,以嗜热性微生物的堆肥化作用消除病虫害,另一方面,也利于消除低分子量代谢产物、增加高分子量的聚合物、提高腐熟度并消除对作物种植的伤害。
图17:传统堆肥制程[19]。
堆肥的完成无法只靠一种微生物,而是多种微生物不断分解的结果。一开始最活跃的是霉菌,消耗有机物中所含的糖类和氨基酸,繁殖速度相当快。当霉菌急速增加时,由于呼吸作用过于旺盛,释放出来的呼吸热使得周围的温度也慢慢上升。直到达摄氏四十度时,霉菌消逝死亡,以耐高温的放射菌作用为主。放射菌开始分解霉菌所不能消化的纤维结合组织。此时,放射菌越活跃,环境的温度可上升接近摄氏60度。当硬质的结合组织被分解完,放射菌的活动量随之减低,温度也跟着下降。当温度适合各式各样的细菌时,将继续分解之后的柔软纤维组织。整个腐熟制程费时耗工、占空间,工序包含材料粉碎、材料混拌、水分调整、堆肥之体积和环境控制与翻堆等,所需时间依有机质肥料的堆积方式而定,现行密闭通风式堆肥制造约需2个月,简易堆肥式制造则需3个月[19]。
作者实验室基于过去等离子体水溶液的基础,结合废弃有机资材如黄豆渣[20-21]和咖啡渣等[22],为农作物生长提供更充足的NO3 –和多种中微量元素,藉由大气等离子体中的活性物质包含反应性氮物质(Reactive Nitrogen Species,RNS)和反应性氧物质(Reactive Oxygen Species,ROS),来取代传统微生物分解废弃有机资材,大幅降低生产的时间空间成本,且消耗全球过量制造的氮,促进地球能有更良好的氮循环。
以近期作者团队向IEEE Transactions on Plasma Science期刊提出的研究结果为例[22],将咖啡渣浸泡于不同气体处理的等离子体水溶液、静置1小时,可得到不同浓度的氮肥离子,如图18所示。其中单纯以氩气(P-ar)处理之等离子体水,由于只有环境中少量的N 2和O 2参与反应,因此得到了较低的NO3 –浓度。
图18:等离子体通入不同气体产生等离子体水之NO3 –浓度,与等离子体水添加咖啡渣后之NO3 –之浓度(P-DI:未经等离子体处理之去离子水)[22]。
当施加空气于等离子体喷流中(P-ar/air),由于空气中有22% O 2和78% N 2促使其产生更多活性离子,进而大幅提高NO3-的浓度。有趣的是将咖啡渣浸泡于等离子体水溶液,NO3 –浓度还能再进一步大幅度提升(C-ar/air),主要乃因咖啡渣中的水溶性胺基酸在活性的等离子体水溶液中被降解为较小的NO3 –离子,这在胺基酸的实验中获得了证明。将咖啡渣中含有的氨基酸单独浸泡于等离子体水溶液中,获得相同的浓度趋势,如图19。
咖啡渣或其水溶性胺基酸在等离子体水中的反应趋向,可藉由氧化还原电位(Oxidation-Reduction Potential,ORP) 获得更深入的理解。ORP可以用来判断物质之间氧化还原的角色或强度[23]。根据文献,高的ORP源自于等离子体水溶液中含有H 2 O 2、NO 2等活性物质[24]。经过空气处理(P-ar/air)后之等离子体水,由于参与反应的氮、氧活性物质较多,因此具有最高的数值,这也代表较高的氧化力,如图20。
等离子体水中的有机物含量越多,其ORP值越低[25],这些存在于等离子体水中的氧化剂被有机物消耗,使有机物转化成更高氧化态的NO3 –离子,并伴随着ORP值降低到一接近平衡的数值。比较咖啡渣加入前后的ORP差距,可以理解差距越大即意含有更高的驱动力,这也说明了为何Ar/Air处理的等离子体水在浸泡咖啡后产生了最多的氮肥料(NO3 – )。最后,植物生长所要的养分除了氮之外,尚需要多种离子。以感应耦合等离子体质谱分析仪(Inductively Coupled Plasma Mass Spectrometry,ICP-MS)分析去离子水与各种等离子体水浸泡咖啡渣后的等离子体溶液,如图21所示。
图21:去离子水与各种等离子体水浸泡咖啡渣后,溶液中之各种肥料成分[22]。
由分析结果可知,整体的成分与化学肥料相近,表示其具有相当的潜力和价值,可进而取代化学肥料甚至是传统的有机肥,未来将以农作物实际种植,来验证其效率及潜力。
结论
大气等离子体(或称常压等离子体)利用周遭空气便能激发等离子体,是未来人类欲降低环境危机极具潜力的技术之一,逐渐受到各个科技领域的瞩目,其可于一般大气环境下作用、低温、低压的特性,造就了与生技产业产生极高的连结与可行性,无论是医疗清洁、半导体面板等制程,甚至是农产品上的应用,都可见其身影。其高活性及高反应性的特点,可在处理对象的表面产生关键助益而非破坏性的影响,许多先进国家对于等离子体水在农业的应用也有着诸多著墨。
作者实验室团队于国内首次揭露大气等离子体在液态有机肥料快速制造的潜力,运用等离子体水溶液和废弃有机资材反应,仅花费1小时,即能将有机物之胺基酸转变成为植物容易吸收的硝酸根离子(NO3 – ),大幅改善过去传统有机肥制造耗时、占空间的问题,在注重环境保护与资源利用的时代,可为农业的循环经济开启新的发展方向。
作者杜正恭、赖元泰,作者依序为中国台湾国立清华大学材料科学工程学系教授、博士研究员
参考文献:
[1]HV Boenig, “Plasma Science and Technology”, Cormell University Press, 1982
[2]GS Selwyn et.al, Contrib. Plasma Phys. vol.6, p610 (2001)
[3]T. Jacobs, R. Morent, ND Geyter, P. Dubruel, and C. Leys, Plasma Chem. Plasma Process. 32 (2013) 1039.
[4]YP Raizer, Gas Discharge Physics, 1991
[5]Boxhammer V, Morfill GE, Jokipii JR, Shimizu T, Klämpfl T, Li YF, Köritzer J, Schlegel J and Zimmermann JL 2012 New J. Phys. 14 113042
[6]Pavlovich MJ, Chang HW, Sakiyama Y, Clark DS and Graves DB 2013 J. Phys. D: Appl. Phys. 46, 145202
[7]Li D, Liu D, Nie Q, Xu D and Kong MG 2014 IEEE Trans. Plasma Sci. 42 2640–1
[8]S.Ma et al. Separation and PurificationTechnology188 (2017) 147–154
[9]Nie QY, Cao Z, Ren CS, Wang DZ and Kong MG 2009 New J. Phys. 11 115015
[10]Sun PP, Park CH and Eden JG 2012 IEEE Trans. Plasma Sci. 40 2946–50
[11]F. Judéea et al, Water Research 133 (2018) 47-5
[12].https://www.businesswire.com/news/home/20190106005072/en/Global-Organic-Fertilizers-Market-2019-2023-14-CAGR-Projection-Over-the-Next-Four-Years-Technavio
[13].https://www.businesswire.com/news/home/20190424005612/en/Global-Water-Soluble-Fertilizers-Market-2019-2023-6-CAGR-Projection-Over-the-Next-Five-Years-Technavio
[14]https://info.organic.org.tw/3519/
[15]https://news.ltn.com.tw/news/life/breakingnews/3869066
[16]http://sciencebitz.com/?page_id=597
[17]Tzu-Chia Wang, Sheng-Yu Hsu, Yuan-Tai Lai, Jenq-Gong Duh, Improving the Growth Rate of Lettuce Sativa Young Plants via Plasma-Activated Water Generated by Multitubular Dielectric Barrier Discharge Cold Plasma System, IEEE Transactions on Plasma Science, 2022, p1-6, doi: 10.1109/TPS.2022.3179734.
[18]Tzu-Ling Chen, Yuan-Tai Lai, Sheng-Yu Hsu, Shou-Yi Chang, Hsueh-Hsing Hung and Jenq-Gong Duh, IEEE Transactions on Plasma Science, ( in press) .
[19]https://www.ntepb.gov.tw/sub/content/index.aspx?Parser=1,19,441,324,366
[20]Tzu-Chieh Huang, Yuan-Tai Lai, Pei-Hung Kuo, Sheng-Yu Hsu, Jenq-Gong Duh, Activation of soy waste solution through plasma treatment, MRS Advances, 6, (2021) , 386–390
[21]Tsai-Ni Ku, Sheng-Yu Hsu, Yuan-Tai Lai, Po-Yu Chen and Jenq-Gong Duh, IEEE Transactions on Plasma Science, ( in press) .
[22]Yun-Chen Chan, Yuan-Tai Lai, Sheng-Yu Hsu, Po-Yu Chen and Jenq-Gong Duh, IEEE Transactions on Plasma Science, (submitted to IEEE) .
[23]Thirumdas, R., et al., Plasma activated water (PAW) : Chemistry, physico-chemical properties, applications in food and agriculture. Trends in food science & technology, 2018. 77: p. 21-31.
[24]Boehm, D., et al., Cytotoxic and mutagenic potential of solutions exposed to cold atmospheric plasma. Scientific reports, 2016. 6 (1) : p. 1-14
[25]Xiang, Q., et al., Influence of organic matters on the inactivation efficacy of plasma-activated water against E. coli O157: H7 and S. aureus. Food Control, 2019. 99: p. 28-33.
- 应该翻译成等离子体,电浆是港台的翻译。