“常规磁子强耦合态依赖于谐振腔才能构建,当谐振腔换成开放器件,众所周知强耦合特征会悉数消失。我们则摆脱了这一依赖,通过外加微波诱导,即可产生磁子强耦合态。利用这个原理,光频梳在原子钟、超灵敏探测中展现了令人惊叹的精度。我们发现的频率梳在微波频段,这是雷达、通讯、信息无线传输使用的频段,可以预测我们的频率梳必然能在这些领域中发挥作用。”

从上海科技大学官网获悉,近日上海科技大学物质科学与技术学院陆卫教授课题组在光子-磁子相互作用及强耦合调控方向取得重要进展。研究团队首次在铁磁绝缘体单晶中发现了一种全新的磁共振,命名为光诱导磁子态,此项发现为磁子电子学和量子磁学的研究打开了全新的维度。研究中揭示的新型磁子强耦合物态,能极大改变铁磁单晶的电磁特性,为光子与磁子的纠缠提供新的思路,这对推动磁子在微波工程和量子信息处理中的应用具有重要作用。该成果发表于物理学领域旗舰期刊《物理评论快报》(Physical Review Letters

芯片的研发主要遵循着摩尔定律,即每18个月到两年间,芯片的性能会翻一倍。然而,随着人类社会逐渐步入后摩尔时代,一味降低芯片制程受到了“极限挑战”。处理器性能翻倍的时间延长,“狂飙”的发展势头遇到了技术瓶颈。在市场需求驱动下,人们迫切需要“新鲜血液”的注入,来激活低功耗、高集成化、高信息密度信息处理载体的出路。基于磁性材料发展建立的自旋电子学以及磁子电子学发展迅猛,为突破上述限制提供了出路。

宏观磁性的起源主要是材料中未配对的电子。电子有两个众所周知的基本属性:电荷与自旋。前者是所有电子器件操控的对象。利用电子电荷属性发展的微电子器件,已经引发了信息产业的革命。然而,面对难以抑制的欧姆损耗,以及信息产业对更高密度存储和先进量子计算的渴求,人们迫切希望进一步利用电子自旋作为信息载体,发展自旋电子学器件,进而继续推动信息技术的发展。尤其是磁性绝缘体中的自旋,它们能够完全避免传导电子的欧姆损失,充分发挥自旋长寿命、低耗散的优势,因此对于开发自旋电子学器件意义重大。磁子态是电子自旋应用中的核心概念,它是磁性材料中的自旋集体激发。它不仅可以高效传递自旋流,还可以与不同的物理体系,例如声子、光子、电子等,发生相互作用,进而重塑材料的声光电磁等物性。此外,磁子还可以与超导量子比特相互作用,在量子信息技术中发挥重要作用。正是由于这些性质与应用潜力,近年来关于磁子的研究引起国际学界的高度关注,磁子电子学、量子磁电子学等新兴领域相继诞生。

铁磁绝缘体单晶球中的磁子态,最早于1956年由美国物理学家Robert L. White和Irvin H. Slot Jr.在实验中发现。根据他们的实验结果,同一年L. R. Walker给出了磁性块体空间受限磁子态的数学描述,称为Walker modes。在随后长达70年中,块体磁性材料中研究的磁子态几乎都属于Walker modes范畴。陆卫教授团队的发现突破了这一范畴,发掘了新的磁子态。在低磁场下,铁磁绝缘体单晶球在受到强微波激励时,内部的非饱和自旋会获得一定的协同性,产生一个与微波激励信号同频率振荡的自旋波(图(a)),该自旋波可被称为“光诱导磁子态(pump-induced magnon mode, PIM)”。光诱导磁子态如同一种“暗”态,无法按传统探测方法直接观测,但可通过其与Walker modes强耦合产生的能级劈裂被间接观察到(图(b))。光诱导磁子态的有效自旋数受激励微波调控,因此当改变激励微波的功率时,耦合劈裂的大小会按照功率四分之一次方的关系变化(图(c)),展现出和常规Autler-Townes劈裂不一样的功率依赖关系。此外,研究团队还发现光诱导磁子态具有丰富的非线性,这种非线性会产生一种磁子频率梳(图(d))。相较于微波谐振电路中产生的频率梳,这一绝缘体中产生的新型频率梳不存在电子噪声,因此有望在信息技术中实现超低噪声的信号转换。

图(a)光诱导磁子态原理示意图,(b)光诱导磁子态的强耦合色散图,(c)强耦合劈裂随微波激励功率的幂次关系,(d)光诱导磁子非线性效应引发的纯磁子频率梳

“常规磁子强耦合态依赖于谐振腔才能构建,当谐振腔换成开放器件,众所周知强耦合特征会悉数消失。我们则摆脱了这一依赖,通过外加微波诱导,即可产生磁子强耦合态。这样的开放边界下的耦合态有望像乐高一样有序组合,获得丰富的功能性。”团队负责人陆卫教授表示,“频率梳就像是一把游标卡尺,能够精准的测量频谱上的风吹草动。利用这个原理,光频梳在原子钟、超灵敏探测中展现了令人惊叹的精度。我们发现的频率梳在微波频段,这是雷达、通讯、信息无线传输使用的频段,可以预测我们的频率梳必然能在这些领域中发挥作用。”(本文参考上海科技大学官网综合报道)

责编:Jimmy.zhang
您可能感兴趣
美国半导体巨头微芯科技(Microchip Technology)宣布了一项重大重组计划,将裁减约2000人,约占员工总数的9%,以应对汽车芯片需求持续低迷的挑战......
马来西亚政府也希望与Arm的交易将使国内生产商扩大规模,创建十家本地芯片公司,年收入总额达约200亿美元,将助GDP增加一个百分点。
2024 年,中国人工智能专业在校生约 4 万多人,而整个领域的人才缺口却高达 500 万……
从品牌战略的角度来看,华为本次选择古代神话中的人物作为商标,可能是为了借助这些神话角色的知名度和文化内涵,打造具有中国特色的品牌形象……
全球前十大高产机构中,9家为中国机构(如中国科学院、清华大学等)。其中,中国科学院以 2018-2023 年期间发布的 14,387 篇文章位居榜首。
这一新指导政策不仅反映了中国在芯片产业中减少对外依赖的战略意图,也体现了RISC-V架构在中国芯片产业中的重要地位和发展潜力。
TEL宣布自2025年3月1日起,现任TEL中国区地区总部——东电电子(上海)有限公司高级执行副总经理赤池昌二正式升任为集团副总裁,同时兼任东电电子(上海)有限公司总裁和东电光电半导体设备(昆山)有限公司总裁。
预计在2025年,以下七大关键趋势将塑造物联网的格局。
领域新成果领域新成果4月必逛电子展!AI、人形机器人、低空飞行、汽车、新能源、半导体六大热门新赛道,来NEPCON China 2025一展全看,速登记!
本次股东大会将采取线上和线下相结合的混合形式召开,股东们可选择现场出席或线上参会。
回顾2024年,碳化硅和氮化镓行业在多个领域取得了显著进步,并经历了重要的变化。展望2025年,行业也将面临新的机遇和挑战。为了更好地解读产业格局,探索未来的前进方向,行家说三代半与行家极光奖联合策划
今日光电     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光引未来...欢迎来到今日光电!----追光逐电 光引未来----编者荐语特征提取是计算机
DeepSeek的崛起不仅是技术革新,更是一场从“机器语言”到“人类语言”的范式革命,推动了AGI时代到来。各个行业的应用场景不断拓展,为企业数字化发展带来了新机遇,同时也面临诸多挑战。不同企业在落地
点击上方蓝字谈思实验室获取更多汽车网络安全资讯01摘要近年来,电子控制单元(ECU)不再局限于简单的便利功能,而是将多种功能整合为一体。因此,ECU 拥有比以往更多的功能和外部接口,各种网络安全问题也
市值一夜蒸发2900亿”作者|王磊编辑|秦章勇特斯拉陷入一个怪圈。马斯克的权力越来越大,但特斯拉的股价却跌得越来越惨。就在昨天,特斯拉股价又下跌了4.43%,一天之内蒸发406亿美元,约合人民币295
差分运算放大电路,对共模信号得到有效抑制,而只对差分信号进行放大,因而得到广泛的应用。差分电路的电路构型    上图是差分电路。    目标处理电压:是采集处理电压,比如在系统中像母线电压的采集处理,
高通又放大招了!3月3日,也就是MWC世界移动通信大会的第一天,高通正式宣布,推出自家的最新5G调制解调器及射频解决方案——高通X85。高通X85对于高通X85的发布,行业早有关注。因为高通的手机So
今日光电     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光引未来...欢迎来到今日光电!----追光逐电 光引未来----来源: 逍遥设计自动化申
                                                                                                
2025年3月11-13日,亚洲激光、光学、光电行业年度盛会的慕尼黑上海光博会将在上海新国际博览中心-3号入口厅N1-N5,E7-E4馆盛大召开。本次瑞淀光学展示方案有:■ MicroOLED/Min