半导体行业越来越倾向于利用碳化硅和氮化镓这类宽带隙材料制造功率器件,但这些材料的成本仍然较高。如今,成本较低的氧化镓技术发展迅速,已达至超宽带隙半导体的前沿。基于其高临界场强、宽可调电导率、低迁移率等固有特性,氧化镓有望实现应用所需的高性能,成为现有宽带隙材料的可行替代。

半导体行业越来越倾向于使用像碳化硅(SiC)和氮化镓(GaN)这类宽带隙材料制造器件,但这些材料的成本仍然相对较高。在过去十年中,氧化镓技术发展迅速,已被推至超宽带隙半导体技术的前沿位置,其主要目标应用领域是电力电子。基于其固有的材料特性-高临界场强、宽可调电导率、低迁移率和基于熔化的体生长,氧化镓有望以低成本提供业界所需的高性能。

为了最大限度地发挥这种新型半导体技术的潜力,业界必须齐心协力解决约束其性能发挥的技术障碍。最早,是京都大学专门从事氧化镓薄膜研发和商业化的子公司得出了“氧化镓技术值得开发”的结论。几年来,超宽带隙半导体领域已经取得了重大技术进步。

作为响应,研究人员最近一直在开发β-氧化镓(β-Ga2O3),这是一种稳定的化合物相。β-Ga2O3的研发是业界对材料研究日益关注的结果,与过去基于结的方法相比,材料研究提高了电力电子器件的整体性能。β-Ga2O3因其固有特性而突出,包括超宽的带隙(5eV的能隙)、良好的导电性和场保持能力以及高临界场强度(其场强值高达5.5MV/m)。

图1:截至2021年,β-Ga2O3在各领域应用商业化方面的技术进步一览表(来源:AIP Publishing)

以不同的方式对材料进行加工,可以产生各种各样的性能,这展示了其灵活性。例如,通过从熔体中掺杂会导致10mΩ-cm的电阻率;而通过硅注入则可以将其降低到1mΩ-cm。另外,可以控制材料上的卤化物蒸气外延,将其掺杂浓度控制在1015~1019/cm3的范围内。

在β-Ga2O3上实现标准特性也相对容易。例如,欧姆和肖特基连接触点可以在相对较低的退火温度下使用钛、铝和镍等标准金属制成。可以使用标准生产设备对材料进行成晶和研磨。不同的介电材料,例如使用原子层沉积方法沉积的Al2O3,可以用作栅极电介质(见图1)。

氧化镓的特性

β-Ga2O3的高临界场和相对低的迁移率,使其表现出比SiC和GaN更好的性能。从熔体中生长的材料特性,支持利用较低成本的大块GaN、SiC和金刚石制造高质量的晶体。β-Ga2O3的主晶体管优值(FoM)约为4H-SiC的3倍,甚至比GaN的主晶体管还要好20%。

凭借这些优势,β-Ga2O3成为现有宽带隙材料的一种可行的低成本替代品,而且还提高了性能。不过,其大规模商业化仍面临下面所列的一些挑战。

首先是材料热性能问题,β-Ga2O3的极低导热性阻碍了高效传热,导热性是电力电子器件的一个关键参数。如何实现超薄的β-Ga2O3管芯,将是提高材料导热性和开发更好的β-Ga2O3器件散热技术的关键。

图2:典型的半导体晶片示意图(来源:Tip3X)

其次是该材料的价带平坦,导致几乎没有空穴传输,这意味着缺少p型结。这样一来,就无法形成雪崩p-n结,因此对于应用在带有噪声电源领域的设备或需要快速接管大电感负载(例如不间断电源)的应用来说,这的确是一个问题。管芯边缘的电场会影响器件额定值,如果解决不好的话,会导致性能和可靠性下降,而缺少p型结可能会使问题更加恶化。另外,缺少p型结也对e型晶体管的设计带来了约束。

再就是,各种管芯端接方法也正在研究中,例如斜角端接和使用p型氧化物的端接。然而,目前缓解这一问题的解决方案需要严格的工艺控制,这也给材料的可用性带来了一些问题(见图2和图3)。

还有,与其他半导体相比,β-Ga2O3的晶圆尺寸较小也是一个问题,因为较大的晶圆尺寸有助于降低制造成本,同时能提高晶体质量并降低缺陷率。目前制造β-Ga2O3器件所使用的最大晶圆尺寸仅为100mm,而业界标准半导体晶圆直径为150mm,越来越多的公司将提升到200mm。为了利用现有的先进制造设备,β-Ga2O3制造必须向更大的晶圆尺寸发展。此外,对β-Ga2O3的研究仍处于起步阶段,因此尚无可用的器件可靠性数据。

图3:垂直功率器件的理论计算性能(RON vs.VBK)。计算中使用的假设列于右侧。该模型考虑了触点、沟道、漂移和衬底电阻;p表示单元间距。(来源:美国物理联合会出版社)

实际上,即便是在经济因素方面,也还有一些问题需要解决。例如在批量生产β-Ga2O3晶体过程中,一部分昂贵的贵金属坩埚的损耗(这些情况包括边缘限定、薄膜馈电生长(EFG)制造法,以及与直拉法(CZ)一起使用的铱坩埚)。如果按其他半导体材料的最新技术所要求的那样来增加衬底尺寸,将会使问题更加恶化,并加速这些坩埚的衰退。

据报道,中国的研究人员已经开发了一些方法,可以缓解这一问题,从而将制造成本降低约10倍,但这项技术的大规模应用效果尚待观察。适用于垂直β-Ga2O3器件外延层生长的制造法,需要目前最先进机器上还没有装备的技术。

通往器件可行性之路

关于使用β-Ga2O3材料所制造器件的设计、开发和商用化方面,业内有大量的兴趣和研究。随着各公司的商业化进展,这种兴趣正在推动衬底制造技术的惊人增长。

目前虽然有许多器件已经有样品,但实际上要应对上述挑战,仍有大量优化工作要做。尽管如此,β-Ga2O3技术仍是已经成熟到了令人兴奋的时刻,因为这种材料很容易获得,器件制造所面临的约束或挑战都已明确,并且都已得到充分验证。

如果建立起行业的一致努力,大规模、经济可行的β-Ga2O3制造技术的成功开发,将为商业化打开大门,从而生产出能够充分利用材料优势的高可靠性器件。

本文为《电子工程专辑》2023年3月刊杂志文章,版权所有,禁止转载。点击申请免费杂志订阅

责编:Jimmy.zhang
阅读全文,请先
您可能感兴趣
SiC的特定特性要求对MOSFET器件和栅极驱动电路进行仔细选择,以确保安全地满足应用需求,并尽可能提高效率。在本文中,我们将讨论为SiC MOSFET选择栅极驱动器时应考虑的标准。
由于在满足所有要求方面存在不同的权衡,因此很难采用一种适用于所有情况的电流检测方法。
泰克公司电源市场部门负责人Jonathan Tucker讨论了更适合宽禁带功率器件的测试方法,以及这些方法如何帮助提高器件的性能。
在接受笔者采访时,Nexperia公司SiC产品组高级总监Katrin Feurle和该公司副总裁兼GaN FET业务部总经理Carlos Castro就这一相关投资计划发表了见解。
碳化硅(SiC)半导体产量的快速增长推动了工艺技术的重大进步。在化学机械平坦化(CMP)方面,降低应力等进步至关重要,因为应力会影响晶圆形状(尤其是弯曲和翘曲),从而对晶圆处理和加工带来重大挑战。
宽禁带半导体(例如SiC和GaN)在可靠性、能效、功率密度和降低成本方面具有重要优势。
目前,智能终端NFC功能的使用频率越来越高,面对新场景新需求,ITMA多家成员单位一起联合推动iTAP(智能无感接近式协议)标准化项目,预计25年上半年发布1.0标准,通过功能测试、兼容性测试,确保新技术产业应用。
中科院微电子所集成电路制造技术重点实验室刘明院士团队提出了一种基于记忆交叉阵列的符号知识表示解决方案,首次实验演示并验证了忆阻神经-模糊硬件系统在无监督、有监督和迁移学习任务中的应用……
C&K Switches EITS系列直角照明轻触开关提供表面贴装 PIP 端子和标准通孔配置,为电信、数据中心和专业音频/视频设备等广泛应用提供创新的多功能解决方案。
投身国产浪潮向上而行,英韧科技再获“中国芯”认可
点击蓝字 关注我们安森美(onsemi)在2024年先后推出两款超强功率半导体模块新贵,IGBT模块系列——SPM31 IPM,QDual 3。值得注意的是,背后都提到采用了最新的FS7技术,主要性能
今日,长飞先进武汉基地建设再次迎来新进展——项目首批设备搬入仪式于光谷科学岛成功举办,长飞先进总裁陈重国及公司主要领导、嘉宾共同出席见证。对于半导体行业而言,厂房建设一般主要分为四个阶段:设备选型、设
近期,多个储能电站项目上新。■ 乐山电力:募资2亿建200MWh储能电站12月17日晚,乐山电力(600644.SH)公告,以简易程序向特定对象发行A股股票申请已获上交所受理,募集资金总额为2亿元。发
12月18日,珠海京东方晶芯科技举行设备搬入仪式。插播:加入LED显示行业群,请加VX:hangjia188在10月31日,珠海京东方晶芯科技有限公司发布了Mini/Micro LED COB显示产品
万物互联的时代浪潮中,以OLED为代表的新型显示技术,已成为人机交互、智能联结的重要端口。维信诺作为中国OLED赛道的先行者和引领者,凭借自主创新,实现了我国OLED技术的自立自强,成为中国新型显示产
来源:IT之家12 月 18 日消息,LG Display 韩国当地时间今日宣布,已将自行开发的“AI 生产系统”投入到 OLED 生产线的日常运行之中,该系统可提升 LG Display 的 OLE
对于华为来说,今年的重磅机型都已经发完了,而明年的机型已经在研发中,Pura 80就是期待很高的一款。有博主爆料称,华为Pura 80将会用上了豪威OV50K传感器,同时电池容量达到5600毫安时。至
又一地,新型储能机会来了?■ 印度:2032储能增长12倍,超60GW据印度国家银行SBI报告,印度准备大幅提升能源存储容量,预计到2032财年将增长12 倍,超60GW左右。这也将超过可再生能源本身
在上海嘉定叶城路1688号的极越办公楼里,最显眼的位置上,写着一句话:“中国智能汽车史上,必将拥有每个极越人的名字。”本以为这句话是公司的企业愿景,未曾想这原来是命运的嘲弄。毕竟,极越用一种极其荒唐的
点击蓝字 关注我们电网和可再生能源系统向着更智能、更高效的方向发展助力优化能源分配构建更加绿色和可靠的能源未来12 月 24 日 上午 9:30 - 11:302024 德州仪器新能源基础设施技术直播