在集成光子学的多个方面所获得的进步是否已经足以达到一个“拐点”,在其后的几年里,该技术将迅速过渡到基于这些器件的大面积设计?或者,这会是一个缓慢、稳定、渐进的过程,这些器件及其架构的采用也会以相对缓慢的步调逐步实施?或者,与大规模生产相关的挑战性障碍和问题会阻碍该技术的发展吗?

在过去的十年中,大学和企业在集成光子学方面做出了重大的研究努力,并取得了切实的进展。目标是开发将系统和组件从“电子加光学”转变为两种技术的无缝融合更好的构建块,这两种技术有很多共同点,并表现出物理定律所定义的重大差异。

几个例子显示了进展的范围。在一个用例研究中,著名的瑞士洛桑理工学院(EPFL)的研究人员通过将稀土离子引入集成光子电路,构建了一个小型波导放大器。

自20世纪80年代以来,掺铒光纤放大器(EDFA)被用来为光纤中的光子提供功率增益(图1),以提高光信号功率,这在长距离通信电缆和光纤激光器中至关重要;请记住,光功率是通过增加给定波长下的光子数量来提高的,而不是光子本身的“幅度”。幅度是一个固定量,为波长的函数。使用铒离子是因为它们可以放大1.55毫米波长范围内的光,而硅基光纤传输损耗在该范围内最低。

图1:掺铒光纤放大器示意图。资料来源:RP Photonics

在简单的掺铒光纤放大器示意图中,两个激光二极管(LD)为掺铒光纤提供泵浦功率。泵浦光通过二色光纤耦合器注入,而光隔离器降低了器件对反射光的灵敏度。

有人尝试使用掺铒光波导代替独特的光纤,但功率输出太低,生产问题很难解决。现在,EPFL团队已经构建并测试了一个基于集成电路的铒放大器,该放大器提供145毫瓦的输出功率和超过30分贝的小信号增益,这与商用光纤放大器(基于光子集成电路的掺铒放大器)相当,如图2所示。

图2:波导放大器示意图。资料来源:EPFL

图2所示为EPFL研究人员开发的一种小型波导放大器。设计中,研究人员成功地将稀土离子注入到集成光子电路中。

该器件基于离子注入,采用超低损耗氮化硅(Si3N4)光子集成电路,波导结构尺寸为毫米级,长约50厘米。通过将电光元件集成到一个公共基板上,进一步减小了分立元件的尺寸和数量,这在某种程度上与将分立晶体管和无源元件集成到IC中的方式有些类似。

英特尔的激光阵列

多波长集成光学领域也取得了进展。英特尔实验室展示了一种完全集成在晶片上的八波长分布式反馈(DFB)激光器阵列,该阵列采用该公司的300毫米硅光子学制造工艺。其输出功率均匀性为±0.25dB,波长间隔均匀性为±6.5%,优于行业规范的要求。

这种使用密集波分复用(DWDM)技术的共封装光学器件,提供了大幅提高带宽的潜力,同时显著减小了光子芯片的物理尺寸。然而,迄今为止,生产具有均匀波长间隔和功率的DWDM光源一直非常困难(见图3)。

图3:八波长激光器阵列示意图。资料来源:英特尔

图3所示为八波长激光器阵列,包括八个微环调制器和一个光波导,各微环以均匀的间距调谐到不同的光波长上,且每个微环都可以单独调制。

英特尔的器件结构确保光源的波长相隔一致,同时保持均匀的输出功率,从而满足光计算互连和DWDM通信的要求。英特尔在III-V芯片邦定工艺之前,使用先进的光刻技术来实现硅波导光栅,这与在3英寸或4英寸III-V芯片制造厂中生产的传统半导体激光器相比,可以产生更好的波长均匀性。

此外,由于激光器的紧密集成,当环境温度变化时,阵列能保持其通道间距一致;这始终是光学器件中的一个主要指标,因为温度引起的漂移会破坏基本一致性。

光学芯片

与这些迈向商用的潜在重要节点在实验室取得进展的同时,市场上也出现了一些其他集成光子技术的进展。支持英特尔的Ayar实验室正在提供单片封装光学I/O(OIO)芯片。这些集成硅光子器件基于CMOS工艺制造,采用多芯片封装(MCP)技术。从而消除了电气I/O瓶颈,在对更多更快性能的不懈追求中,提高了功率效率、实现了低延迟和高带宽密度,如图4所示。

图4:不同技术的集成度比较。资料来源:Ayar实验室

图4显示光电集成方法的层次以性能递增的方式给出不同的选项,最顶部的是光子全集成。

上述解决方案将TeraPHY(封装内光学I/O芯片)与SuperNova(多波长光源)相结合,将硅光子学与标准CMOS制造工艺相结合,与电子I/O相比,仅需1/10的功率即可将带宽密度提升高达1000倍(参见图5)。

图5:TeraPHY OIO小芯片构成的高级组件示意图。资料来源:Ayar Labs

图5所示的高级组件中,TeraPHY OIO小芯片(每个小芯片包含多达8个256Gbps光端口)采用倒装芯片连接,使多光端口的封装集成和自动化组装得到简化。

我想知道:在集成光子学的多个方面所获得的进步是否已经足以达到一个“拐点”,在其后的几年里,该技术将迅速过渡到基于这些器件的大面积设计?或者,这会是一个缓慢、稳定、渐进的过程,这些器件及其架构的采用也会以相对缓慢的步调逐步实施?或者,与大规模生产相关的挑战性障碍和问题会阻碍该技术的发展吗?

五到十年后,让我们再回头看看到底产生了什么结果。将今天的预测、推断和预期与届时的现实相比较,这将是一件非常有趣的事情。

(参考原文:Integrated photonics advancing on multiple fronts

本文为《电子工程专辑》2023年1月刊杂志文章,版权所有,禁止转载。点击申请免费杂志订阅

责编:Jimmy.zhang
本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
阅读全文,请先
您可能感兴趣
SiC的特定特性要求对MOSFET器件和栅极驱动电路进行仔细选择,以确保安全地满足应用需求,并尽可能提高效率。在本文中,我们将讨论为SiC MOSFET选择栅极驱动器时应考虑的标准。
“以前大型医疗设备90%以上都是国外进口,现在国产完全自主可控已经非常多,特别感谢(芯原股份)戴伟民董事长把这件事做起来,芯片是所有医疗器械的灵魂,没有芯片很难往前进行。” 蒋田仔教授说道……
美国麻省理工学院和加拿大渥太华大学的科学家们联合研发出一种新型超薄晶体薄膜半导体,其电子迁移速度达到传统半导体的7倍,为电子设备性能的飞跃提供了可能。
BLDC的应用持续增长,主要市场驱动力来自于以下几个方面:工业类电机应用节能指令提出了新要求;印度对于吊扇应用,致力于实现50%的节能目标;越来越多设备的终端客户,希望有更好的使用体验。
西门子董事会已批准该项收购,该交易预计将于2025财年上半年完成,这是西门子重组其投资组合的最新举措。
随着全球对新能源汽车需求的持续增长,预计未来几年,Serdes技术将在新能源汽车领域扮演越来越重要的角色。
目前,智能终端NFC功能的使用频率越来越高,面对新场景新需求,ITMA多家成员单位一起联合推动iTAP(智能无感接近式协议)标准化项目,预计25年上半年发布1.0标准,通过功能测试、兼容性测试,确保新技术产业应用。
中科院微电子所集成电路制造技术重点实验室刘明院士团队提出了一种基于记忆交叉阵列的符号知识表示解决方案,首次实验演示并验证了忆阻神经-模糊硬件系统在无监督、有监督和迁移学习任务中的应用……
C&K Switches EITS系列直角照明轻触开关提供表面贴装 PIP 端子和标准通孔配置,为电信、数据中心和专业音频/视频设备等广泛应用提供创新的多功能解决方案。
投身国产浪潮向上而行,英韧科技再获“中国芯”认可
来源:苏州工业园区12月17日,江苏路芯半导体技术有限公司掩膜版生产项目迎来重要进展——首批工艺设备机台成功搬入。路芯半导体自2023年成立以来,专注于半导体掩膜版的研发与生产,掌握130nm至28n
近期,多个储能电站项目上新。■ 乐山电力:募资2亿建200MWh储能电站12月17日晚,乐山电力(600644.SH)公告,以简易程序向特定对象发行A股股票申请已获上交所受理,募集资金总额为2亿元。发
来源:观察者网12月18日消息,自12月2日美国发布新一轮对华芯片出口禁令以来,不断有知情人士向外媒透露拜登政府在卸任前将采取的下一步动作。美国《纽约时报》12月16日报道称,根据知情人士以及该报查阅
2024年度PlayStation游戏奖今日公布,《宇宙机器人》获得年度最佳PS5游戏,《使命召唤:黑色行动6》获得年度最佳PS4游戏。在这次评选中,《宇宙机器人》获得多个奖项,包括最佳艺术指导奖、最
 “ 担忧似乎为时过早。 ”作者 | RichardSaintvilus编译 | 华尔街大事件由于担心自动驾驶汽车可能取消中介服务,Uber ( NYSE: UBER ) 的股价在短短几周内从 202
又一地,新型储能机会来了?■ 印度:2032储能增长12倍,超60GW据印度国家银行SBI报告,印度准备大幅提升能源存储容量,预计到2032财年将增长12 倍,超60GW左右。这也将超过可再生能源本身
扫描关注一起学嵌入式,一起学习,一起成长在嵌入式开发软件中查找和消除潜在的错误是一项艰巨的任务。通常需要英勇的努力和昂贵的工具才能从观察到的崩溃,死机或其他计划外的运行时行为追溯到根本原因。在最坏的情
近期,高科视像、新视通、江苏善行智能科技等企业持续扩充COB产能。插播:加入LED显示行业群,请加VX:hangjia188■ 高科视像:MLED新型显示面板生产项目(二期)招标12月18日,山西高科
LG Display  12月18日表示,为加强OLED制造竞争力,自主开发并引进了“AI(人工智能)生产体系”。“AI生产体系”是AI实时收集并分析OLED工艺制造数据的系统。LG Display表
 “ AWS 的收入增长应该会继续加速。 ”作者 | RichardSaintvilus编译 | 华尔街大事件亚马逊公司( NASDAQ:AMZN ) 在当前水平上还有 38% 的上涨空间。这主要得益