自动驾驶汽车有许多棘手的技术问题仍远未解决。在我看来,这里有三个关键问题:为什么自动驾驶汽车问题如此难以解决?不同的自动驾驶汽车用例如何影响自动驾驶汽车问题?自动驾驶汽车用例的部署将如何发展?

自动驾驶汽车(AV)的发展继续吸引着交通和其他工业领域的大量投资。这些赌注是必要的,因为许多棘手的技术问题仍远未解决。

在我看来,这里有三个关键问题:

  • 为什么自动驾驶汽车问题如此难以解决?
  • 不同的自动驾驶汽车用例如何影响自动驾驶汽车问题?
  • 自动驾驶汽车用例的部署将如何发展?

为了回答这些问题,我们用三个图表总结了一份报告,旨在为新手和专家提供一些视角。

自动驾驶汽车复杂性问题

自动驾驶汽车的根本问题是在针对SAE Level 4功能开发安全、可靠的自动驾驶汽车时涉及巨大的复杂性。图1总结了这些困难。

图1:自动驾驶汽车问题范围。

图1所示,自动驾驶汽车问题在红色块中分为三组。潜在的解决方案列在12个黑框中——每个问题由四个框组成。请注意,有三个框中的蓝色文字相同,因为这三种类别的问题都需要用软件平台、人工智能(AI)软件——包括机器学习和神经网络——来解决。

首先,在大多数情况下,需要以厘米级的精度了解自动驾驶汽车的确切位置。下一步是对所有道路使用者和物体进行分类,包括他们正在做什么(如果有的话),并预测他们在接下来的几秒钟内可能会做什么。

这些问题的解决方案包括大量传感器、强大的计算能力以及管理多个复杂系统所需的平台和人工智能(AI)软件。例如,一辆典型的无人驾驶出租车需要30多个传感器,包括摄像头、雷达和激光雷达。例如,Zoox最近发布的无人驾驶出租车公告列出了64个传感器:28个摄像头、20个雷达和16个激光雷达。

处理传感器数据还需要基于人工智能的视觉软件。大多数的自动驾驶汽车都需要高清地图才能精准定位。

所有软件和硬件系统都需要大范围的网络安全保护。软件还必须使用内置的空中下载(OTA)软件的更新功能来定期更新。

第二个问题是确保自动驾驶汽车硬件和软件的可靠性,没有单点故障。如果发生故障,则需要所谓的“跛行模式”功能,至少可以将车辆引导到路边。

随着自动驾驶汽车法规的引入,必须将安全和操作规则作为系统和可靠性设计的一部分。

还需要在系统设计中加入硬件冗余。至少有三个自动驾驶汽车系统需要冗余:驾驶控制(转向、制动、速度)、视觉传感器功能(三种类型)和计算。

系统架构必须使用能够简化软件平台合作的技术,从而实现强大的网络安全和空中下载(OTA)更新。

这些系统仍然相当昂贵,并且需要显著降低成本。幸运的是,基于芯片的技术可以节省大量成本,尤其是对于最昂贵的组成部分:激光雷达。

对自动驾驶汽车各组成部分进行仿真至关重要,包括软件和硬件以及所有类型的测试和建模。

需要使用自动驾驶汽车事件数据记录器来深入了解碰撞情况以及可以采取哪些措施来提高安全性。远程操作也正在成为自动驾驶汽车监管的标准,并且在解决边缘案例时成为跛行模式性能的关键。

第三个问题是开发一个超越人类驾驶员的软件驾驶员。到底好多少还在争论中。很明显,自动驾驶汽车的开发人员必须继续测试和改进他们的系统。开发时间将取决于用例。

边缘案例测试被广泛使用,基本上意味着发现了新的驾驶状况,软件驾驶员以前没有见过而且可能也不知道如何处理。将新的边缘案例添加到软件驾驶员的功能上,可能被认为有着最高的优先级。

另一个难题的确认是自动驾驶汽车软件驾驶员可以胜过人类驾驶员。目前尚不清楚自动驾驶汽车法规和未来的自动驾驶汽车型式认证将如何处理这一重要问题。

解决方案主要涉及测试,分析大量测试数据以甄别出软件驾驶员的弱点,然后进行更多测试。幸运的是,大部分的测试可以仿真而且速度比道路测试高得多——在仿真模式下每天的英里数要比道路测试高出100多倍。这些仿真侧重于边缘案例和类似情况。

测试必须包括不同的天气和照明条件。大多数之前的自动驾驶汽车测试都是在理想的天气条件下完成的。因此,需要更大的真实世界仿真。

自动驾驶汽车用例

以上描述的复杂性将根据自动驾驶汽车用例产生很大差异。自动驾驶汽车的复杂性主要由驾驶时的复杂性所决定。图2概述了自动驾驶汽车用例的复杂性,重点关注SAE L4部署。这些场景的多种变化不包括在内。

图2:自动驾驶汽车用例的复杂性。

图2显示了各种自动驾驶汽车用例在二维空间内的适应情况,自动驾驶汽车的复杂度随y轴增加,驾驶的复杂度则随x轴增加。驾驶的复杂度包括路线障碍、驾驶速度、交通密度、道路使用者的种类(汽车、自行车、行人等)以及天气状况。还列出了死亡风险,这主要由速度决定。一些自动驾驶汽车用例的死亡风险率非常低。

低自动驾驶汽车复杂性

低自动驾驶汽车复杂性是指简单的路线、低速度和低用户或低交通状况。在最简单的层面上,操作仅限于封闭区域,例如校园、办公园区或军事基地。人行道送货车以及其他参与者则是最远。人行道自动驾驶汽车领导者Starship在2021年5月的交付量超过了150万次,并将很快超过200万次。

固定路线自动驾驶汽车的自动驾驶汽车复杂性也较低,这个市场利基包括多个参与者。这类汽车部署比较缓慢,因为其价格高昂,但已在数百个城市进行测试。应用包括低复杂性的公交路线和/或封闭环境。

固定路线自动驾驶汽车也可用于灵活的旅行,例如按需接送。最近于2021年7月发布的ISO 22737低速自动驾驶(LSAD)法规,应该会对固定路线自动驾驶汽车的部署产生积极影响。

用于最后一英里交付的纯货物自动驾驶汽车带来了更多的交通复杂性,其在道路上行驶的速度比人行道自动驾驶汽车更高。货车和小型卡车也可以改装为自动驾驶送货车。它们正在使用安全驾驶员进行测试。

中等自动驾驶汽车复杂性

这个类别包括几种自动驾驶汽车场景。没有安全驾驶员的低速货物自动驾驶汽车属于这一类。也可包括具有枢纽到枢纽路线的自动驾驶卡车,但目前需要一名安全驾驶员。这个类别也被称为中间一英里(middle-mile)卡车运输。

如果将安全驾驶员移除,则可将远程操作监控用于枢纽到枢纽卡车运输及自动驾驶出租车。大多数自动驾驶法规都要求将远程操作作为管理自动驾驶的最后手段,以防它们被卡住。远程操作也可能成为一种更普遍的技术,最终取代安全驾驶员。

高自动驾驶汽车复杂性

图2包括三个具有高自动驾驶复杂性的用例。枢纽到枢纽的卡车运输用例在这一类别中最低,其次是自动驾驶出租车。仍处于设计阶段的个人自动驾驶汽车,也将被归类为高复杂性。个人自动驾驶汽车可能会受益于在都市区部署自动驾驶出租车的经验。

自动驾驶汽车用例部署

自动驾驶汽车部署将从简单过渡到复杂。将图2的用例图稍作修改可得到图3,它将x轴更改为表示时间线,并贴上绿色标签,用来表示用例块的重新分布。自动驾驶汽车用例的放置,反映出它们在时间线上何时可能会看到有意义的使用。

图3:自动驾驶汽车用例演变。

在这种情况下,人行道自动驾驶汽车的部署率最高,其在许多城市用来运送餐食、杂货和其他小包裹。这种自动驾驶汽车也是最便宜的产品,因为传感器更少,重量更轻,行人速度更慢。撞到某人或某物的风险相对较低。

纯货运自动驾驶汽车以Nuro送货车为代表,其基本上还处于测试模式。当前的广告表明,Nuro可能已准备好广泛的部署。

自动驾驶出租车仍主要处于测试阶段并配有安全驾驶员。Waymo在菲尼克斯地区大部分的测试中都移除了安全驾驶员。一些自动驾驶出租车运营商已获准在美国和中国的一些城市对其服务收费。

配备安全驾驶员的货物自动驾驶汽车,还为商店和/或仓库之间的最后一英里或中间一英里运营运送包裹。

固定路线自动驾驶汽车,如EasyMile、Local Motors和Navya,已在多个国家/地区进行了大规模的测试。新冠疫情导致了大多数测试停止,这些测试的重点是每次乘车最多运送12名乘客。最近的ISO LSAD法规涵盖了这一用例,并应在未来几年启动固定路线自动驾驶汽车的使用。

配有安全驾驶员的枢纽到枢纽的自动卡车测试越来越多。其中大部分包括将货物运送给付费客户。

其余类别的部署则会难上很多,因此会比图3所示的时间点更晚到达。枢纽到枢纽的自动卡车可能会在2025年左右部署。自动驾驶出租车的大规模部署则是几年后的事情了,据一些自动驾驶出租车的期待者声称,这可能会在少数几个城市发生。个人自动驾驶汽车则将会明显晚于自动驾驶出租车。

用人工智能(AI)处理复杂性

自动驾驶汽车技术仍旧难以实现,但一些用例的复杂性较低,并将以有限的数量部署。针对更简单的自动驾驶汽车场景的法规正在出现,许多公司最终将依据法规部署。

所有自动驾驶汽车法规都要求能远程操作,但为了提前部署某些用例,也可用它来替代安全驾驶员。

自动驾驶汽车系统的成本目前仍由昂贵的激光雷达占据主导地位,未来五年将迅速下降。这意味着2025年之后,过高的自动驾驶汽车系统成本不会成为阻碍因素。

早期部署的复杂自动驾驶汽车系统最终将取决于人工智能技术的突破,这是无法预测的。如果出现这样的创新,潜在用户可能不必等到2030年才能使用个人自动驾驶汽车。

(原文刊登于EDN姐妹网站EE Times,参考链接:AV Complexity Explained,由Franklin Zhao编译。)

本文为《电子技术设计》2022年2月刊杂志文章,版权所有,禁止转载。免费杂志订阅申请点击这里

责编:Amy.wu
本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
阅读全文,请先
您可能感兴趣
新公司将包括本田、日产和三菱汽车,预计年销量将超过800万辆,成为世界第3大汽车制造集团。这将使新公司在全球汽车市场中占据重要地位,尤其是在与特斯拉和中国电动车品牌的竞争中。
面对AI时代带来的差异化趋势、软件应用及开发时间长、软硬件协同难、高复杂度高成本等挑战,国产EDA仍需不断探索和创新。
这些故障与特斯拉最新版本的HW4(内部代号为AI4.1)自动驾驶电脑紧密相关。有消息人士透露,在摄像头校准过程中,低压电池可能导致了电脑短路,这是目前调查中的一种可能性。
有鉴于电动汽车、自动驾驶和人工智能业务等未来增长潜力,以及在马斯克在当选总统特朗普政府中的“特殊地位”,多家分析机构认为,马斯克的财富未来还将进一步增长。
特斯拉Model Q内部代号为“Redwood”,车身长度约为3988毫米,比Model 3短了15%,车身重量减轻了约30%。同时,该车提供53kWh和75kWh两种规格的磷酸铁锂电池,续航里程预计可达500公里。
据CNUR统计,在2025年IEEE Fellow名单中,美国入选人数达136人,中国入选65人(含港澳台),紧随其后;日本、德国等国家均有10位入选。2025年IEEE Fellow名单的公布再次证明了中国科学家在全球科技舞台上的重要地位和影响力。
目前,智能终端NFC功能的使用频率越来越高,面对新场景新需求,ITMA多家成员单位一起联合推动iTAP(智能无感接近式协议)标准化项目,预计25年上半年发布1.0标准,通过功能测试、兼容性测试,确保新技术产业应用。
中科院微电子所集成电路制造技术重点实验室刘明院士团队提出了一种基于记忆交叉阵列的符号知识表示解决方案,首次实验演示并验证了忆阻神经-模糊硬件系统在无监督、有监督和迁移学习任务中的应用……
C&K Switches EITS系列直角照明轻触开关提供表面贴装 PIP 端子和标准通孔配置,为电信、数据中心和专业音频/视频设备等广泛应用提供创新的多功能解决方案。
投身国产浪潮向上而行,英韧科技再获“中国芯”认可
今日,长飞先进武汉基地建设再次迎来新进展——项目首批设备搬入仪式于光谷科学岛成功举办,长飞先进总裁陈重国及公司主要领导、嘉宾共同出席见证。对于半导体行业而言,厂房建设一般主要分为四个阶段:设备选型、设
近期,多个储能电站项目上新。■ 乐山电力:募资2亿建200MWh储能电站12月17日晚,乐山电力(600644.SH)公告,以简易程序向特定对象发行A股股票申请已获上交所受理,募集资金总额为2亿元。发
万物互联的时代浪潮中,以OLED为代表的新型显示技术,已成为人机交互、智能联结的重要端口。维信诺作为中国OLED赛道的先行者和引领者,凭借自主创新,实现了我国OLED技术的自立自强,成为中国新型显示产
来源:IT之家12 月 18 日消息,LG Display 韩国当地时间今日宣布,已将自行开发的“AI 生产系统”投入到 OLED 生产线的日常运行之中,该系统可提升 LG Display 的 OLE
“ 洞悉AI,未来触手可及。”整理 | 美股研究社在这个快速变化的时代,人工智能技术正以前所未有的速度发展,带来了广泛的机会。《AI日报》致力于挖掘和分析最新的AI概念股公司和市场趋势,为您提供深度的
2024年度PlayStation游戏奖今日公布,《宇宙机器人》获得年度最佳PS5游戏,《使命召唤:黑色行动6》获得年度最佳PS4游戏。在这次评选中,《宇宙机器人》获得多个奖项,包括最佳艺术指导奖、最
万物互联的时代浪潮中,以OLED为代表的新型显示技术,已成为人机交互、智能联结的重要端口。维信诺作为中国OLED赛道的先行者和引领者,凭借自主创新,实现了我国OLED技术的自立自强,成为中国新型显示产
阿里资产显示,随着深圳柔宇显示技术有限公司(下称:“柔宇显示”)旗下资产一拍以流拍告终,二拍将于12月24日开拍,起拍价为9.8亿元。拍卖标的包括位于深圳市龙岗区的12套不动产和一批设备类资产,其中不
近期,高科视像、新视通、江苏善行智能科技等企业持续扩充COB产能。插播:加入LED显示行业群,请加VX:hangjia188■ 高科视像:MLED新型显示面板生产项目(二期)招标12月18日,山西高科
亲爱的企业用户和开发者朋友们距离2024 RT-Thread开发者大会正式开幕仅剩最后3天!还没报名的小伙伴,抓紧报名噢,12月21日不见不散!大会时间与地点时间:2024年12月21日 9:30-1