作为工业 4.0 的重要组成部分,本地决策系统在设备内或附近收集传感器数据,以此为依据做出正确判断,帮助检修人员提前发现昂贵、复杂的可能是远程设备出现的小问题......

工业预测性维护概念存在已久,最早可以追溯到人们第一次说“机器很快就会坏了”的时候。从给手表内部的轴承加注润滑油,到养护维修大型发电设备,从简单的家电,到复杂的空间站,预测性维护无处不在。

早期预测性维护在很大程度上依赖技工的专长和直觉来解决问题或诊断故障,而今天的先进诊断设备和工业 4.0 技术增加了电子传感器和机械传感器,能够更准确地发现并诊断问题。传感器已成为预测性维护应用的重要组件。

Figure 1 -- Typical PM Application in Industry 4.0

 1—工业 4.0 中的典型预测性维护应用

作为工业 4.0 的重要组成部分,本地决策系统在设备内或附近收集传感器数据,以此为依据做出正确判断,帮助检修人员提前发现昂贵、复杂的可能是远程设备出现的小问题,避免酿成大事故。这个功能要求传感器必须具有边缘处理[13]能力和人工智能 (AI),因为人工智能是预测性维护应用的关键技术。通过直接在传感器或主控制器上实现AI 和边缘处理,例如,STM32[8] 中的 FP-AI-MONITOR1[7],可以在本地执行数据分析决策。

图 1所示是一个典型的预测性维护应用示意图,其中,传感器检测设备产生的信息并将数据传给主控制器。在工业3.0 中,描述机器状况的原始传感器数据直接传输给操作员,不涉及任何本地处理或决策任务。在工业 4.0 中,主控制器在本地处理传感数据,在本地做出决策。如果发送条件没有满足特定的通知标准,主控制器允许无线连接模块部分睡眠。操作员仅在收到云端的通知消息后才开始介入。这种方法减少了传输到云端的数据量,降低了本地传感器节点的功耗。 

更深入地讲,实现这个感知决策模块有四个关键步骤: 重要参数识别; 数据分析; 传感器选择和决策位置选择。

1)、重要参数识别

许多参数可以指示机器的健康状况。设计人员需要根据这些参数的特性和预测机器状态的能力来筛选重要参数。在图 2 的应用场景中,声学、温度和物理振动加速度等参数都可以指示机器的重型轴承的磨损情况。设计人员将研究分析哪些参数可以用于预测轴承 60%健康状态。最理想的是,只用一个参数就足以提供最有意义的信息,并让决策树能够判断轴承健康状况已达到60%。

在这个示例中,机器的健康状况分为四个阶段,如表 1 所示:  

 1——机器健康状态分期

 

健康标志 时间节点 机器状况 措施
80% t1 开始磨损 维修信号
60% t2 摩擦力增加 需要维修
50% t3 轴承开始破裂 需要更换
<30%  t4 紧急更换 严重事故

 

 2  重要参数与机器健康状况的关系

设定当重型轴承达到60%健康状况时发出预警,我们捕获了加速度、超声波和温度与时间(周)的关系并绘制成图,以便分析研究重要参数,如图2所示,三个参数都可以指示轴承的磨损状况。研究发现如下:

  • 当轴承在t之后进入损坏阶段时,加速度数据给出强烈信号。但是,它不能很好地跟踪 t3之前的健康状态,也就是不能有效记录机器达到50%健康状况前的状况,这意味着我们无法在轴承损坏前准确地预判机器的健康状况,所以,仅依靠加速度计的指示信息不足以预测早期磨损程度。
  • 直到轴承进入损坏阶段t4温度数据才能准确地跟踪轴承的健康状况。不管什么原因引起轴承损坏,温度参数都不能在摩擦力急剧增加之前给出轴承损坏的明显信号。
  • 超声参数可以有效地跟踪轴承的健康状况,最早在 t1 时就能发出信号。随着摩擦力增加,当轴承达到60%健康状况时,它会发出一个明显信号。 然而,从绘制的数据图看,当轴承健康在 t左右下降到 50% 以下时,超声波信号开始失去对机器健康状况的跟踪,这是因为轴承严重磨损并破裂,极大地改变了轴承的特性,并导致轴承的振动曲线超出了超声扫描范围。这个阶段的强烈的振动恰好可以被加速度计感知到。

从这个示例不难看出,超声检测是预测性维护实现60%健康状况预警的重要参数。

2)、数据

一旦确定了重要参数,下一步就是研究数据概要信息。设计人员必须评测不同的数据处理能力和 人工智能算法,才能可靠地预测机器的健康状况。

有许多数据处理方法可用实现预测性维护应用,这些数据处理方法可分为两大类:时域和频域[9]。每种方法都有各种的优缺点。

  • 时域方法简单易懂,算力要求低。传感器的输出始终在时域范围内。时域信号的均方根 (RMS)、平均值或峰值检测是典型的跟踪值。比较原始数据或处理后数据的阈值或幅度可以获得决策标志。这种方法的缺点是它仅适用于简单的波形分析。在实际工业应用中,有些数据分析是很复杂的,因为它们可能包含不同机械部件的振动和其他机器的环境振动。图 3 所示是在时域中的数据分析示例。

 3 - 时域加速波形示例

在这个例子中,电机不平衡产生的振动幅度远大于输出轴产生的振动幅度。如果采用RMS或平均值或其他的时域信号处理方法,传感器是不能有效地识别输出轴的振动程度。

 4 -多个波形组成复杂波形

  • 不过,有一个强大的信号处理方法可以管理复杂的信号。这种类型的复杂波形是由多个简单波形组成,如图 4 所示。快速傅里叶变换 (FFT) 是一个有效的波形分析工具,可将时域数据转换为频域数据,把不同部件产生的振动置于不同频谱中,如图 5 所示。

 5 - 频谱

傅里叶变换方法把不同源的振动幅度分成不同的频谱。除傅里叶变换之外,数据处理还可以利用其他的技术方法,例如,平均值、RMS、峰值、神经网络等,进行准确的数据过滤,为决策树提供更可靠的数据,实现更智能的决策。

参数识别和数据分析需要一些工具,下面是一些常用工具:

a)、专业测量工具

可以使用现成的专业测量设备获取准确而详细的测量数据,要求苛刻的高精度应用强烈推荐采用这类专业级测量设备。

b)、评估演示套件

意法半导体等传感器厂商提供免写软件的评估套件(图 6)。这些小主板,例如,STEVAL-MKI109V3,具有插接传感器板卡的插座。设计人员可以选择把喜欢的传感器板卡插到主板上。有些厂商还提供用于控制传感器的图形用户界面 (GUI)软件。这些GUI软件可以存取传感器的全部寄存器,配置和检索数据,不用写代码,并提供实用的数据处理运算功能,例如,傅里叶变换FFT 就是其中的一个功能(图 7)。

 6 -- STEVAL-MKI109V3评估与传感器板卡连接

 7 -- STEVAL-MKI109V3 GUI 

若评估传感器的特性功能及其适用性,建议使用免写代码的评估板。这些板卡还可以执行初始数据采集,启动工程算法和数据分析过程。如果到了后面的原型开发或概念验证阶段,传感器厂商可能会提供另一个强大的开发工具,以大幅简化开发任务,缩短开发周期。以STWIN 开发套件为例:

c)、STWIN 无线工业节点 (STEVAL-STWINKT1B)[10][11] 是一个开发套件和参考设计,可简化工况监测和预测性维护等先进工业物联网应用原型开发和测试。

 8 -- STEVAL-STWINKT1B

 9 - SensorTile Box与手机交互

STWIN 开发套件基于STM32超低功耗微控制器,集成各种工业级传感器,包括惯性传感器(振动传感器、加速度计、6 轴 IMU、磁传感器)、环境传感器(高精度温度传感器、压力传感器、湿度传感器)和高性能传声器(数字传声器和模拟传声器,有超声波感应功能),支持各类状态监测,尤其是与振动分析相关的监测。该开发套件还配有丰富的软件包和优化的固件库,以及云端仪表板应用程序,以加快端到端整体解决方案的设计周期。

该套件板载Bluetooth® 低能耗无线连接模块,并可以插接一块Wi-Fi无线连接子板 (STEVAL-STWINWFV1)。有线连接可以通过板载 RS485 收发器实现。

3)、传感器选型

手头有了数据分析工具后,下一步就是选择合适的传感器:

a) 根据1) 中发现的重要参数选择传感器类型

意法半导体提供加速度计、陀螺仪、磁力计、振动传感器、传声器、压力传感器、湿度传感器、温度传感器、激光传感器、红外传感器等各种传感器。工业级传感器通常提供更高的性能和精度、更好的温度和时间稳定性,甚至提供产品生命周期保证。

b) 根据2) 中发现的最大测量范围和灵敏度或重要频率范围(带宽)选择传感器量程;

每个传感器都有自己的最大量程和频响带宽。设计人员必须仔细研究这两个参数,以选择最适合的传感器。图 9 显示了一系列我们为预测性维护应用场景推荐的型号。

 10  根据应用场景选择传感器

4)、决策树位置选择

作为业界公认的 MEMS 技术先驱,意法半导体率先在传感器产品中嵌入边缘处理功能。设计人员可以给传感器中的边缘处理分区或将在主控制器内嵌入决策树。最佳选择取决于数据处理和决策树的复杂程度。意法半导体传感器中的决策功能分为三类:

  • 嵌入式简单逻辑

意法半导体MEMS 传感器都有简单的嵌入式阈值比较逻辑功能。振幅和时间窗口阈值一旦达到预设值,就会触发中断标志。

  • 有限状态机 (FSM)[6]

状态机是用于设计逻辑连接的数学抽象方法(图 10)。FSM 是一种由预定数量的状态和状态之间的转换组成的行为模型,类似于流程图。传感器可以设为用户定义模式一旦满足,就立即生成决策标志。为了便于实现决策功能,意法半导体有些传感器嵌入了16 状态机。

 11 - 传感器嵌入有限状态机

  • 机器学习核心 (MLC)[5]

MLC机器学习核心不是用来处理复杂数据的,所以它不能做有限状态机的工作。MLC 确实可以将一些原本应在应用处理器上运行的低密度算法转移到 MEMS 传感器上,从而显著降低系统功耗。当数据模式与用户定义的一个类集合匹配时,MLC 可以识别这些数据模式。传感器使用包含滤波器的可配置的专用计算模块和在用户设定的固定时间窗口内计算出来的特征来过滤输入数据。机器学习处理的基本原理是通过一系列可配置的节点以“如果-那么-否则”为条件比较预设阈值和“特征”值的逻辑处理过程(图 11)。

 12 - 传感器的MLC内的决策过程

总之,作为工业 4.0应用的基本组成部分,传感器是预测性维护中必不可少的组件,并且,利用内置的智能功能,传感器可以降低主控制器的负荷,从而提高整个系统的能效。作为 MEMS 传感器行业的领导者,意法半导体提供全系列的传感器(加速度计、陀螺仪、磁力计、振动传感器、传声器、压力传感器、湿度传感器、温度传感器、激光传感器和红外传感器等)。在预测性维护等应用领域,这个范围广泛的产品在创新概念和实际应用之间架起了一座重要的桥梁。

Resource and Reference参考文献

[1] Industrial Evolution:  https://en.wikipedia.org/wiki/Fourth_Industrial_Revolution#History

[2] MEMS: https://en.wikipedia.org/wiki/Microelectromechanical_systems

[3] https://www.st.com/resource/en/datasheet/iis2dlpc.pdf

[4] 0.061mg/LSB=0.061x9.8milim meter/s2/ bit:

https://www.st.com/resource/en/datasheet/lsm6dso.pdf

[5] Sensors with Machine Learning:

https://www.st.com/content/st_com/en/ecosystems/MEMS-Sensors-Ecosystem-for-Machine-Learning.html

[6] Finite State Machine in MEMS Sensor:

https://blog.st.com/lsm6dso-accelerometer-finite-state-machines/

[7] FP-AI-Monitor1: STM32Cube function pack for ultra-low power STM32 with artificial intelligence (AI) monitoring application based on a wide range of sensors

https://www.st.com/en/embedded-software/fp-ai-monitor1.html

https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html

[9] Capacitive MEMS accelerometer for condition monitoring

https://www.st.com/content/ccc/resource/technical/document/white_paper/group0/c0/30/46/2f/00/24/42/1c/Capacitive_MEMS_accelerometer_for_condition_monitoring/files/MEMS_Condition_monitoring.pdf/jcr:content/translations/en.MEMS_Condition_monitoring.pdf

[10] STWIN SensorTile Wireless Industrial Node development kit and reference design for industrial IoT applications

https://www.st.com/en/evaluation-tools/steval-stwinkt1b.html

[11] How to use the STEVAL-STWINKT1B SensorTile Wireless Industrial Node for condition monitoring and predictive maintenance applications

https://www.st.com/resource/en/user_manual/um2777-how-to-use-the-stevalstwinkt1b-sensortile-wireless-industrial-node-for-condition-monitoring-and-predictive-maintenance-applications-stmicroelectronics.pdf

[12] IIS3DWB Sensor Adaptor Board

https://www.st.com/en/evaluation-tools/steval-mki208v1k.html

[13] Edge Processing (Edge Computing)

https://en.wikipedia.org/wiki/Edge_computing

责编:Amy.wu
阅读全文,请先
您可能感兴趣
碳化硅(SiC)衬底已在电动汽车和一些工业应用中确立了自己的地位。然而,近来氮化镓(GaN)已成为许多重叠应用的有力选择。了解这两种衬底在大功率电路中的主要区别及其各自的制造考虑因素,或许能为这两种流行的复合半导体的未来带来启示。
对于大多数片上系统(SoC)设计而言,最关键的任务不是RTL编码,甚至不是创建芯片架构。如今,SoC主要是通过组装来自多个供应商的各种硅片知识产权(IP)模块来设计的。这使得管理硅片IP成为设计过程中的主要任务。
英特尔的嵌入式多裸片互连桥(EMIB)技术,旨在解决异构集成多芯片和多芯片(多芯粒)架构日益增长的复杂性,在今年的设计自动化大会(DAC)上掀起了波澜。它提供了先进的IC封装解决方案,包括规划、原型设计和签核,涵盖了2.5D和3D IC等广泛的集成技术。
一项技术要想产生广泛的影响,它不仅要解决短期的挑战,还应该超越现有技术的进步,为未来的创新打开大门。这就是我们对泛林集团(Lam Research)今年早些时候推出的全球首个用于半导体量产的脉冲激光沉积(PLD)技术的描述。
能量采集是低功耗电子设备供电技术发展的基本支柱,为实现对环境影响最小的可持续技术的未来铺平了道路。
许多人都听说过缓存一致性这个术语,但并不完全了解片上系统(SoC)器件,尤其是使用片上网络(NoC)的器件中的注意事项。要了解当前的问题,首先必须了解缓存在内存层次结构中的作用。
• 得益于西欧、关键亚洲市场和拉丁美洲市场的增长,以及中国品牌的持续领先,全球折叠屏手机出货量在2024年第二季度同比增长了48%。 • 荣耀凭借其在西欧特别强劲的表现,成为最大的贡献者,成为该地区排名第一的品牌。 • 摩托罗拉的Razr 40系列在北美和拉丁美洲表现良好,为其手机厂商的出货量贡献了三位数的同比增长。 • 我们预计,头部中国手机品牌厂商的不断增加将至少在短期内抑制三星Z6系列在第三季度的发布。
AI技术的发展极大地推动了对先进封装技术的需求,在高密度,高速度,高带宽这“三高”方面提出了严苛的要求。
奕斯伟计算2024首届开发者伙伴大会以“绿色、开放、融合”为主题,从技术创新、产品应用、生态建设等方面,向开发者、行业伙伴等相关方发出开放合作倡议,加速RISC-V在各行各业的深度融合和应用落地,共同推动RISC-V新一代数字基础设施生态创新和产业发展。
2024年 Canalys 中国云计算渠道领导力矩阵冠军厂商分别是:阿里云、华为云和亚马逊云科技(AWS)
在全球智能手机竞争日益激烈的情况下,谁能在高端市场站稳脚跟,谁就占据了主动权。一直以来全球智能手机市场格局都是,苹果专吃高端,其他各大厂商分食全球中低端市场。但现在市场正在其变化。根据Canalys最
文|德福很多去成都旅游的朋友都有个疑惑——为什么在成都官方的城市标志上看不到熊猫,而是一个圆环?其实这个“圆环”大有来头,它被唤作太阳神鸟,2001年出土于大名鼎鼎的金沙遗址,距今已有三千余年历史。0
‍‍近期,IC 设计大厂联发科宣布了2024年上半年度的员工分红计划,与8月份薪资一起发放。据外界估算,按照上半年税前盈余约648.66亿新台币(约 144.42 亿元人民币)进行估算,此次分红总额接
在德国柏林举行的IFA 2024上,AMD计算和图形业务集团高级副总裁兼总经理Jack Huynh宣布,公司将把以消费者为中心的RDNA和以数据中心为中心CDNA架构统一为UDNA架构,这将为公司更有
‍‍‍‍上市PCB厂商竞国(6108)日前出售泰国厂给予陆资厂胜宏科技后,近日惊传台湾厂惊传12月前关厂,并对客户发布通知预告客户转移生產,最后出货日期2024年12月25日。至於后续台湾厂400名员
8月28-30日,PCIM Asia 2024展在深圳举行。“行家说”进行了为期2天的探馆,合计报道了200+碳化硅相关参展企业(.点这里.)。其中,“行家说”还重点采访了骄成超声等十余家企业,深入了
今日碎碎念由于所租的共享办公空间政策的调整,上周我和我队友又搬到开放共享空间了。所以,也就有了新同桌。从我的观察来看,新同桌们应该基于AI应用的创业型公司。之所以想起来叨叨这个,是因为两位新同桌正在工
在苹果和华为的新品发布会前夕,Counterpoint公布了2024年第一季度的操作系统详细数据,数据显示, 鸿蒙操作系统在2024年第一季度继续保持强劲增长态势,全球市场份额成功突破4%。在中国市场
近日,3个电驱动项目迎来最新进展,包括项目量产下线、投产、完成试验等,详情请看:[关注“行家说动力总成”,快速掌握产业最新动态]青山工业:大功率电驱项目下线9月5日,据“把动力传递到每一处”消息,重庆