LDO 有助于确保为性能取决于干净输入的元件提供稳定的低噪声和低纹波电源。但是,市场中有如此多的LDO,如何为子系统选择合适的耐辐射器件呢?

耐辐射低压降稳压器 (LDO) 是许多航天级子系统(包括现场可编程门阵列 (FPGA)、数据转换器和模拟电路)的重要电源元件。LDO 有助于确保为性能取决于干净输入的元件提供稳定的低噪声和低纹波电源。

但是,市场中有如此多的LDO,如何为子系统选择合适的耐辐射器件呢?让我们看看一些设计规格和器件特性,以帮助您做出这个决定。

航天级LDO的压降

LDO的压降是输入电压和输出电压之间的电压差,在该电压差下 LDO 停止调节输出电压。压降规格越小,能够实现的工作电压差就越小,从而使功率耗散和热耗散更少,并从本质上提高最大效率。这些优势在更高的电流下会变得更加显著,如公式 1 所示:

LDO 功率耗散 = (VIN - VOUT) x IOUT                 (1)

在耐辐射方面,很难找到在辐射、温度和老化方面提供强大性能的真正低压降稳压器。例如,TI 的耐辐射 LDO TPS7H1101A-SP 能够在 3A 电流下提供 210mV 的典型压降 (Vdo),该压降目前在市场上属于超低水平。如果您有标准的 5V、3.3V、2.5V 或 1.8V 电源轨可用,该LDO 可以将输出电压调低至 0.8V 以提供任何所需的电压,以及一个或多个航天级模数转换器 (ADC) 或时钟所需的电流。

航天级LDO的噪声性能

随着卫星在太空中运行10年或更长时间,使机载集成电路充分发挥性能有助于确保设计寿命。为了向高性能时钟、数据转换器、数字信号处理器或模拟元件提供干净、低噪声的电源轨,LDO 电路需产生超小的内部噪声。由于不容易滤除内部产生的 1/f 噪声,因此应采用具有固有低噪声特性的 LDO。低频噪声通常是最大的,也是最难滤除的。TPS7H1101A-SP 提供超低的 1/f 噪声水平,在 10Hz 频率下的峰值约为 1µV/Hz。有关 RMS 噪声随频率变化的情况,请参阅下面的图 1。

 1TPS7H1101A-SP 噪声

航天级 LDO  PSRR

电源抑制比 (PSRR) 用于衡量 LDO 清除或抑制由上游其他元件传入噪声的能力。对于高端 ADC,为了更大限度地减少位错误,输入电源噪声要求不断提高。鉴于控制环路的特性,在较高的频率下,很难获得高PSRR。通常,设计人员需要使用外部元件来滤除噪声,从而达到可接受的有效 PSRR,但会增加解决方案尺寸 – 这对于航天应用而言是一个明显的问题,因为尺寸和重量会直接影响卫星发射成本。在上游电源的开关频率下,需要特别注意 PSRR(因为在该频率下存在电压纹波)。此外,由于开关谐波的影响,在该频率下也要妥善考虑 PSRR。如果您期望实现出色的 PSRR,TPS7A4501-SP LDO 可在 100kHz 的频率下提供超过 45dB 的 PSRR。

其他重要的 LDO 特性

除压降、PSRR 和噪声之外,让我们看看实现耐辐射 LDO 性能不可或缺的几项出色特性。

使能。在太空中,太阳能电池板只能提供一定的电能,而许多功能都依靠电能才能运行。利用使能特性,您可以在任何给定的时间指定 LDO 是打开还是关闭,事实证明,该特性对于节省整体功率预算而言至关重要。使能引脚对于上电时序而言也很重要,而新一代 FPGA 对上电时序的需求越来越大。

软启动。电压上升过快可能会导致电流过冲或过大的峰值浪涌电流,从而损坏 FPGA 或 ADC 等下游器件。软启动特性可调节启动时输出电压上升的速度。软启动还可以防止上游电源产生过电流,从而防止出现不可接受的电压下降。

输出电压精度。通常,Xilinx KU060 等较新的航天级 FPGA 对每个电源轨都有严格的输入电压容差要求,以实现最佳性能。为确保您的设计在辐射暴露和寿命终止条件下满足严格的精度要求,请采用 TPS7H1101A-SP 等器件,该器件位于 KU060 开发板上。

尺寸。除了采用易于布局的小型封装之外,减小解决方案尺寸的其他方法包括限制 LDO 的外部元件数量,实现更多集成功能、更好的 PSRR 和噪声规格,以及在单粒子效应下实现更可靠的耐辐射性能。TI 的 TPS7A4501-SP 在封装尺寸、布局和解决方案尺寸方面都是一款业界超小的耐辐射 LDO。

结语

面对如此多的器件,选择一款合适的 LDO 可能很困难,应从哪些功能和特性最重要的角度考虑。例如,如果您的应用要为高端 FPGA 或高速数据转换器供电,则输出电压精度、基准精度、PSRR 和噪声等特性可能是需要优先考虑的因素。不过,如果您要设计低性能模拟电路或使用容差要求不那么严格的旧 FPGA,那么在保持适当功能的同时拥有尺寸超小、成本超低的解决方案可能是更好的选择。

责编:Amy.wu
您可能感兴趣
功率器件(如MOSFET、IGBT和二极管)需要适当的封装设计,以优化散热、提高效率和确保可靠性。热管理对于避免过热、保持性能和延长器件使用寿命至关重要。
随着GaN器件在电机驱动器和电动汽车等高电压、高频率应用中的使用,散热、封装和可靠性方面的问题也开始显现出来。通过解决重大的热管理问题,创新封装技术的最新进展旨在缓解这些挑战,从而降低成本并提高整体系统可靠性。
太倒霉了,把儿童手表的充电线,接到了骨传导耳机上,当下耳机就被烧了!是手表充电线电流过大导致的损坏?还是正负极反接造成的?
业界正从“引线框架”设计转向在具有复杂布线图案的多层电路衬底上安装IC,这一转变推动了对先进IC衬底的需求,并催生了对新型绝缘材料的迫切需求。
碳化硅技术正在彻底改变电力电子行业,使各种应用实现更高的效率、更紧凑的设计和更好的热性能。ST、安森美、Wolfspeed、罗姆和英飞凌等领先制造商均提供SiC解决方案,可根据特定用例提供分立器件、功率模块或裸片形式的产品。
2.5D和3D集成研究旨在突破内存与处理单元间的数据传输瓶颈。为解决这一瓶颈,研究人员将内存堆栈放置得更靠近芯片,并在硅中介层上实现不同裸片和内存单元的异构集成。
TEL宣布自2025年3月1日起,现任TEL中国区地区总部——东电电子(上海)有限公司高级执行副总经理赤池昌二正式升任为集团副总裁,同时兼任东电电子(上海)有限公司总裁和东电光电半导体设备(昆山)有限公司总裁。
预计在2025年,以下七大关键趋势将塑造物联网的格局。
领域新成果领域新成果4月必逛电子展!AI、人形机器人、低空飞行、汽车、新能源、半导体六大热门新赛道,来NEPCON China 2025一展全看,速登记!
本次股东大会将采取线上和线下相结合的混合形式召开,股东们可选择现场出席或线上参会。
千万级中标项目5个,百万级中标项目12个。文|新战略根据公开信息,新战略移动机器人产业研究所不完全统计,2025年2月,国内发布35项中标公告,披露总金额超15527.01万元。(由新战略移动机器人全
市值一夜蒸发2900亿”作者|王磊编辑|秦章勇特斯拉陷入一个怪圈。马斯克的权力越来越大,但特斯拉的股价却跌得越来越惨。就在昨天,特斯拉股价又下跌了4.43%,一天之内蒸发406亿美元,约合人民币295
差分运算放大电路,对共模信号得到有效抑制,而只对差分信号进行放大,因而得到广泛的应用。差分电路的电路构型    上图是差分电路。    目标处理电压:是采集处理电压,比如在系统中像母线电压的采集处理,
从上表可知,2024年前三季度全球40强PCB企业总营收约416.7亿美元,同比增长7.6%。其中,营收排名第一位的是臻鼎科技(36.05亿美元),排名第2~5位的分别是欣兴电子(26.85亿美元)、
新思科技与国际半导体产业协会基金会(SEMI 基金会)近日在新思科技总部宣布签署一份谅解备忘录(MoU),携手推动半导体芯片设计领域的人才发展。据预测,到 2030 年,全球半导体行业将需要新增 10
点击文末“阅读原文”链接即可报名参会!往期精选《2024年度中国移动机器人产业发展研究报告》即将发布!2024年,36家移动机器人企业融了超60亿元2024移动机器人市场:新玩家批量入场,搅局还是破局
前不久,“行家说三代半”报道了长安汽车采用氮化镓OBC车载电源(点击查看)。近期,比亚迪、广汽埃安两家车企又相继公布了氮化镓应用进展:比亚迪&大疆:车载无人机采用氮化镓技术3月2日,比亚迪、大疆共同发
今日光电     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光引未来...欢迎来到今日光电!----追光逐电 光引未来----来源: 逍遥设计自动化申
今日光电     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光引未来...欢迎来到今日光电!----追光逐电 光引未来---- 来源:时光沉淀申明:感
2025年3月11-13日,亚洲激光、光学、光电行业年度盛会的慕尼黑上海光博会将在上海新国际博览中心-3号入口厅N1-N5,E7-E4馆盛大召开。本次瑞淀光学展示方案有:■ MicroOLED/Min