磁铁设计是创造核聚变所需条件中最重要的挑战之一。MIT与CFS的研究人员指出,要打造并局限电浆以产生比所消耗更多的能源,利用该团队所开发的磁铁技术就可能实现。

美国新创公司Commonwealth Fusion Systems (CFS)和麻省理工学院(MIT)的电浆科学与融合中心(Plasma Science and Fusion Center)宣布,他们已成功测试一个高温超导磁铁。MIT研究人员和CFS指出,测试出的20-tesla磁场强度,是目前地球上所能产出的最强的磁场,这也为首座核聚变发电厂的建设开辟了一条道路。

磁铁设计是创造核聚变所需条件中最重要的挑战之一。MIT与CFS的研究人员指出,要打造并局限电浆以产生比所消耗更多的能源,利用该团队所开发的磁铁技术就可能实现。

“MIT和CFS独特的伙伴和合作关系,让我们能够敏捷且快速地设计、制造并测试这种磁铁;”MIT电浆科学与融合中心主任Dennis Whyte在一场记者会上表示:“我们能够利用每个组织的优点建立一个团队,在因为气候危机带来的时间压力下提供这项技术。”

不可否认,核聚变技术的门坎非常高。如果MIT的技术能获得证实,可望成为一种零排碳、无限的能源,也会是MIT一个名为“SPARC”的高磁场核聚变能源实验项目很重要的里程碑。SPARC尝试实现至少2的融合增益(fusion gain)──又称为Q-因子(Q-factor),这意味着产生的核聚变能量是用以维持融合反应所需能量的两倍。一套示范性设备预计于2025年完成。

MIT的高温超导磁铁研发项目。

(图片来源:MIT)

MIT Research副总裁Maria Zuper表示:“我们的目标基本上是建造一座像是小型高中体育场大小的发电厂,能产出和燃煤发电厂一样的发电量而且零碳排。将使用的燃料是氢,来自于水,因此我们将有取之不尽的供应来源。”

磁场

核聚变是太阳产生能量的过程。在一个核聚变反应当中,两个轻核(light nuclei)合并成单一个较重的核子就会释出能量,这是因为所形成的单一核子总质量小于两个原始核子的质量,而剩余的质量就会变成能量。

一个磁场可以将质子与电子或电浆的结合限制住,就像一个看不见的“斗篷”;该磁场对带电粒子有显著的控制作用。一种被称之为“托克玛克”(tokamak)的甜甜圈形状结构,是最常见的核聚变反应炉磁局限设计。

目前有超过150座托克玛克反应炉设备被打造出来且在运作中,每一套设备都是透过接近核聚变点(fusion point)来展示其功能性,不过大多数设备都是利用铜电磁铁(copper electromagnets)来产生磁场,法国的国际热核聚变实验反应炉(ITER)设计则是利用所谓的低温超导体技术。

研究人员表示,MIT与CEF的核聚变成果有一个关键的优势,就是透过使用高温超导体能产生相当强的磁场,并能让托克玛克设备的尺寸更小。该成果是透过利用一种新的超导材料来实现的,即一种在开氏温度20度(20 degrees Kelvin)下运作的稀土钡铜氧化物(rare-earth barium copper oxide,ReBCO)。

带状(ribbon-shaped)的ReBCO在几年前才实现商业化应用,这种新高温超导磁铁的应用,得益于过去几十年以托克玛克实验取得的结果。

磁铁设计

新磁铁的研发以及供应链、制程的发展需要花费三年的时间。研究人员指出,有大量的产品原型透过实体模型和CAD设计产出。

该种新磁铁会经过一连串的步骤逐渐地充电,直到维持在20 tesla的磁场。研究人员表示,这是目前“透过高温超导融合磁铁所能达到的最大磁场强度,”为了创造一个强大的磁场,这种材料必须容纳于一个强大的金属结构中。

新磁铁的规模和性能类似于MIT在2016年所完成的Alcator C-Mod核聚变反应炉实验,该实验使用非超导体电磁铁。“两者在能源消耗上的差异相当显著;”Whyte表示:“因为Alcator C-Mod实验是用一个普通的铜导电磁铁,大约消耗200百万瓦(million watts )的能源,已产生局限的磁场。”

研究人员正准备高磁场超导设备。 

(图片来源:MIT)

而新磁铁的能源消耗仅约30瓦,Whyte说,这代表着局限磁场所需的能源总量已经少了100万倍。这样的转换意味着一个高磁场超导设备可望产生“净能量(net energy),因为我们不需要利用很多能源去产生局限磁场。”

MIT核聚变中心的测试也显示,依照一定比例建造的磁铁可望维持超过20 tesla的磁场,该SPARC托克玛克设备所需的性能指针,也将用以证实来自核聚变的净能量。

其测试是关于在有限的能源消耗下,让一个超导磁铁能达到足够的温度以创造磁场。该磁场的强度范围需要几天的时间爬升,直到足以维持到设计人员认可的一个稳定状态;此状态是透过能量消耗和温度之间的平衡来达成的。

研究人员的下一步是以成功的磁铁测试为基础来建构SPARC核聚变设备;尽管仍有艰巨的显技术和经济挑战有待克服,但研究人员相信,实现核聚变能源的道路终将一片平坦。

编译:Judith Cheng

(参考原文:MIT Magnet Enables Path to Commercial Fusion Power,By Maurizio Di Paolo Emilio)

责编:Luffy Liu

本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
阅读全文,请先
您可能感兴趣
SiC的特定特性要求对MOSFET器件和栅极驱动电路进行仔细选择,以确保安全地满足应用需求,并尽可能提高效率。在本文中,我们将讨论为SiC MOSFET选择栅极驱动器时应考虑的标准。
泰克公司电源市场部门负责人Jonathan Tucker讨论了更适合宽禁带功率器件的测试方法,以及这些方法如何帮助提高器件的性能。
在接受笔者采访时,Nexperia公司SiC产品组高级总监Katrin Feurle和该公司副总裁兼GaN FET业务部总经理Carlos Castro就这一相关投资计划发表了见解。
宽禁带半导体(例如SiC和GaN)在可靠性、能效、功率密度和降低成本方面具有重要优势。
毫无疑问,乌克兰“价值26万美元”的矿产资源将成为这一计划的重要组成部分,不仅让美国通过控制这些资源来重塑全球供应链,而且进一步增加自身的财富和影响力。
宽禁带半导体材料的兴起成为了电力电子领域最为显著的变化之一。作为行业领导者,PI公司不仅敏锐地捕捉到了这一趋势,而且通过自主研发和技术创新,积极地适应了市场的变化。借该公司1700V氮化镓功率器件发布之机,笔者有幸对PI营销副总裁Doug Bailey进行了专访。
目前,智能终端NFC功能的使用频率越来越高,面对新场景新需求,ITMA多家成员单位一起联合推动iTAP(智能无感接近式协议)标准化项目,预计25年上半年发布1.0标准,通过功能测试、兼容性测试,确保新技术产业应用。
中科院微电子所集成电路制造技术重点实验室刘明院士团队提出了一种基于记忆交叉阵列的符号知识表示解决方案,首次实验演示并验证了忆阻神经-模糊硬件系统在无监督、有监督和迁移学习任务中的应用……
C&K Switches EITS系列直角照明轻触开关提供表面贴装 PIP 端子和标准通孔配置,为电信、数据中心和专业音频/视频设备等广泛应用提供创新的多功能解决方案。
投身国产浪潮向上而行,英韧科技再获“中国芯”认可
今日,长飞先进武汉基地建设再次迎来新进展——项目首批设备搬入仪式于光谷科学岛成功举办,长飞先进总裁陈重国及公司主要领导、嘉宾共同出席见证。对于半导体行业而言,厂房建设一般主要分为四个阶段:设备选型、设
‍‍12月18日,深圳雷曼光电科技股份有限公司(下称“雷曼光电”)与成都辰显光电有限公司(下称“辰显光电”)在成都正式签署战略合作协议。双方将充分发挥各自在技术创新、产品研发等方面的优势,共同推进Mi
万物互联的时代浪潮中,以OLED为代表的新型显示技术,已成为人机交互、智能联结的重要端口。维信诺作为中国OLED赛道的先行者和引领者,凭借自主创新,实现了我国OLED技术的自立自强,成为中国新型显示产
2024年度PlayStation游戏奖今日公布,《宇宙机器人》获得年度最佳PS5游戏,《使命召唤:黑色行动6》获得年度最佳PS4游戏。在这次评选中,《宇宙机器人》获得多个奖项,包括最佳艺术指导奖、最
“ 洞悉AI,未来触手可及。”整理 | 美股研究社在这个快速变化的时代,人工智能技术正以前所未有的速度发展,带来了广泛的机会。《AI日报》致力于挖掘和分析最新的AI概念股公司和市场趋势,为您提供深度的
12月18 日,据报道,JNTC与印度Welspun BAPL就车载盖板玻璃的开发及量产签订了投资引进业务合作备忘录(MOU)。资料显示,JNTC是韩国的一家盖板玻璃厂商。Welspun的总部位于印度
在上海嘉定叶城路1688号的极越办公楼里,最显眼的位置上,写着一句话:“中国智能汽车史上,必将拥有每个极越人的名字。”本以为这句话是公司的企业愿景,未曾想这原来是命运的嘲弄。毕竟,极越用一种极其荒唐的
在科技浪潮翻涌的硅谷,马克·扎克伯格不仅是“脸书”帝国的掌舵人,更是以其谦逊低调的形象,在公众心中树立了独特的领袖风范。然而,在镁光灯难以触及的私人领域,扎克伯格与39岁华裔妻子普莉希拉·陈的爱情故事
点击蓝字 关注我们电网和可再生能源系统向着更智能、更高效的方向发展助力优化能源分配构建更加绿色和可靠的能源未来12 月 24 日 上午 9:30 - 11:302024 德州仪器新能源基础设施技术直播
亲爱的企业用户和开发者朋友们距离2024 RT-Thread开发者大会正式开幕仅剩最后3天!还没报名的小伙伴,抓紧报名噢,12月21日不见不散!大会时间与地点时间:2024年12月21日 9:30-1