不管单纯的物理导热,还是风冷、水冷、液氮散热解决方案,都是导热介质接触芯片表面封装层(Die),只能对直接接触面散热。这种方式也会给芯片顶层带来压力,因为整个芯片的热量都要从硅芯片传导到内部导热材料,再传导到芯片Die,最后才能集中通过导热介质传输到散热器散发出去。若未来芯片大量采用垂直3D堆叠技术,大量集体管集中在芯片中间,要怎样才能即使将热量传导出去呢?

各类处理器的性能越来越高,让人们在使用电子设备时的体验也随之升高,但是高集成度带来的副作用之一就是巨大的发热量。再加上电子产品在高性能、高功率化的同时,还向着超薄、微型化发展,电子元件散热空间越来越小,单位面积内产生的热量却越来越多。

芯片散热的不同方法

研究表明,几十年来计算机发热密度一直呈指数级增长,如果热量不能及时散出,则会导致器件中自由电子和金属原子动能显著增加,碰撞概率加大,带来“电子迁移”效应令计算机不能正常工作。美国国防先进项目研究署(DARPA)甚至还对此动员了国家实验室和著名大学等科研机构,进行了针对性的研究,主要分布在固体和流体散热技术两个领域。

早期PC行业普遍对高端CPU、GPU等发热量大的器件,采用导热硅脂涂抹,加装散热鳍片、导管以及风扇的风冷方式散热,这属于固体散热(导热)的范畴。对于超频爱好者来说,风冷已经不能满足他们,所以将芯片浸泡在循环非导电液体水冷散热,甚至超低温液氮中成了一个更为高效的选择,这就属于流体研究的领域。

导热材料散热工作原理示意图

对于服务器机房这种热源集中地,数据中心24小时冷气是最基本的,很多业界巨头还会将数据中心建在寒冷的高纬度地区,甚至放进海中或者将设备浸泡在特殊液体、压缩气体里,提高散热的效率。

大型设备散热可以不考虑体积,但手机等便携式设备可不行。目前智能手机中的发热源除了SoC,还有屏幕、射频前端、摄像头模组及电池,且紧凑的结构让废热更加难以导出。市面上智能手机散热的方案主要有:导热凝胶、石墨片、石墨烯、均温板、热管等,5G的到来带来了加倍的射频器件,也带来了更多的热,手机散热需求出现井喷。

芯片堆叠时代,“中间楼层”降温不易

但不管单纯的物理导热,还是风冷、水冷、液氮散热解决方案,都是导热介质接触芯片内封装层(Die),只能对直接接触面散热。这种方式也会给芯片顶层带来压力,因为整个芯片的热量都要从硅芯片传导到内部导热材料,再传导到芯片Die,最后才能集中通过导热介质传输到散热器散发出去。若未来芯片大量采用垂直3D堆叠技术,大量集体管集中在芯片中间,这些散热效果就会大打折扣。另外水冷的方法需要加装较复杂的外部设备,不适合在轻薄型设备中使用,价格也十分昂贵,不适合普通消费者。

 

据Hardwareluxx报道,近期台积电(TSMC)在VLSI研讨会上,展示了对片上水冷的研究,作为新的散热解决方法,涉及将水通道直接集成到芯片的设计中。 这个理论很简单,有些类似CPU散热器中内嵌微热管的方式,不少玩家曾经无数次幻想过的这样的微热管也能存在于芯片里,但对于本就不宽敞的芯片内部而言实现起来极其困难。

台积电开展这项研究的背景如我们之前所述,芯片设计的复杂化以及工艺制造技术的发展,带来了更紧密的工艺和垂直3D芯片堆叠等技术。缩小芯片体积让晶体管之间的空间被压缩得更厉害,以往的多重传导聚顶式散热已经不能满足要求了。

三种片上水冷,三种硅上水道

据tom’s Hardware报道,台积电的研究人员认为未来的解决方法是让水在夹层电路之间流动,为此他们对三种不同的硅水道做了相关的模拟试验:一种只有直接水冷 (Direct Water Cooling,DWC),作为制造过程的一部分,水有自己的循环通道直接蚀刻到芯片的硅片中;另一种设计将水通道蚀刻到芯片顶部自己的硅层中,使用 OX(氧化硅融合)的热界面材料 (Thermal Interface Material,TIM) 层将热量从芯片传递到水冷层;最后是一种将 OX 层换成更简单、更便宜的低熔点液态金属热界面材料(Liquid Metal TIM,LMT),这种属于没有水道的方式。

台积电在报告中说,结果显示第一种方法最好,因为水道直接蚀刻在芯片本体中国。其次是第二种方法,因为第二第三种都是在硅芯片表面再加了一层带水路蚀刻的硅材料,用导热材料粘接,效果是要打些折扣。

台积电还在受控实验室条件下对虚拟半导体进行了测试。如上图所示,一种热测试载体 (Thermal Test Vehicle,TTV)本质上是一种由铜制成的加热元件,本身有温度传感器。加热元件的表面为 540 mm²,TTV 的总面积为 780 mm²。TTV 在它自己的基地中被拉伸,这使得电力供应、供水和排放以及传感器的连接成为可能。小编觉得引入温度传感还有一个作用是,需要在25°C的恒温下引入水,以免出现芯片过热时突然遇冷“炸锅”。

台积电在可控条件下测试了三种硅水通道的集成:一种是基于柱状结构的通道,水可以在有源半导体柱周围流动以冷却它们(想想岛屿周围的水);以沟渠设计为特色的设计(想象一条被河岸控制的河流);在硅芯片的其余部分上安装一个简单的平坦的水通道。水通过一个外部冷却机制,将水通过硅芯片的过程冷却到25ºC。

 

从台积电的报告可以看出,目前最好的解决方案是直接水冷方法,它可以消散高达2.6千瓦(kW)的热量,提供63 ºC的温度差。第二好的设计自然是基于OX TIM的设计,它仍然可以散去2.3千瓦的热量,提供83 ºC的温度差。液态金属解决方案排在最后,仍能散发出1.8千瓦的热量(温度差为75 ºC)。在所有的水流设计中,柱式设计是迄今为止最好的。

当然,只靠芯片内这一点水流是不足以令其降温的,最终芯片内的“河流”还是会把内部深处的热量带到表面,由散热器或外部水冷系统散发到空气中。其本质在于将原本芯片上层的散热层“打薄”并将导热材质分散到内部各层中,让芯片中热源不再依赖硅晶本体传导热量的,减小电子迁移给处理器性能带来的负作用。

结语

早在20世纪初,英特尔公司迫于奔腾处理器的发热量过大问题,不得不放弃增加工作频率来提高处理器计算速度的做法,转而走双核路线,但双核的奔4功率居然也高达200W左右。当时还在英特尔担任首席技术官的帕特·盖尔辛格 (Pat Gelsinger)放话,如果芯片耗能和散热的问题得不到解决,当芯片上集成了2亿个晶体管时,就会热得像“核反应堆”,2010年时会达到火箭发射时高温气体喷射的水平,而到2015 年就会与太阳的表面一样热。

如今,各大厂商已经把单颗芯片上的晶体管堆上了百亿级别。英伟达(NVIDIA)的A100加速器连同HBM2E和作为SXM4模块,已经有高达500W的废热;英特尔的Xe-HPC芯片Ponte Vecchio甚至有高达600W的余热。但主流空气强制对流散热方案,也只是在散热器的结构和材质上做文章,并没有深入芯片内。虽然也有科学家在研究纳米微气流冷却、热电/热声冷却、光子主动冷却等黑科技,但真正能大规模商用的几乎没有,英特尔、AMD、英伟达以及后来的手机处理器厂商高通、苹果等,只能从优化架构、提升工艺甚至软件降频上去减小发热量。

据悉,今年底AMD就将使用 3D V-Cache 作为处理器的附加 SRAM,这些额外的高功耗缓存将直接位于现有的 L3 缓存之上,而不是位于 Zen 3 核心之上,不能直接接触散热器将使冷却它们变得异常困难。AMD会不会用上台积电提出的芯片内“水道战”冷却解决方案?小编估计还没这么快,实验室中的技术离商用可能还有数年时间。但这绝对在晶体管密度持续增加、每区域性能指标持续改进的大趋势下,未来 3D 堆叠芯片设计需要考虑的散热方向之一。

责编:Luffy Liu

本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
阅读全文,请先
您可能感兴趣
前不久兆易创新发布了EtherCAT从站控制芯片和基于Cortex-M33的GD32G5系列MCU。基于此,本文尝试谈谈兆易创新对MCU的态度和思考...
今年进博会上,瑞萨展示了不少AI相关的技术。在我们与赖长青的对谈中,他也解读了AI对于瑞萨而言意味着什么...
为了帮助产业链上下游企业更好地把握AIoT市场发展商机,由全球领先的专业电子机构媒体AspenCore携手深圳市新一代信息通信产业集群联合主办的【2024国际AIoT生态发展大会】于7月25日在深圳君悦酒店隆重举办。
英飞凌最近更新了PSOC MCU产品线,最新的PSOC Edge强化了AI能力。MCU的AI化似乎已经成为某种趋势...
市面上现有基于RISC-V的IP不少,已经上市的RISC-V芯片数量也已经不小了。但我们说,新思去年底推出了RISC-V指令集的ARC-V处理器IP,对于RISC-V生态而言仍然是个大事件。原因是这样的...
嵌入式领域正经历一场深刻的变革。连接设备正逐渐演变为可根据所收集的数据自行做出决策的系统。相较于在物联网网关或云端进行数据处理而言,在更接近采集源之处完成数据处理的方式,将有望加快决策速度、减少延迟、解决数据隐私问题、降低成本并提高能效。
目前,智能终端NFC功能的使用频率越来越高,面对新场景新需求,ITMA多家成员单位一起联合推动iTAP(智能无感接近式协议)标准化项目,预计25年上半年发布1.0标准,通过功能测试、兼容性测试,确保新技术产业应用。
中科院微电子所集成电路制造技术重点实验室刘明院士团队提出了一种基于记忆交叉阵列的符号知识表示解决方案,首次实验演示并验证了忆阻神经-模糊硬件系统在无监督、有监督和迁移学习任务中的应用……
C&K Switches EITS系列直角照明轻触开关提供表面贴装 PIP 端子和标准通孔配置,为电信、数据中心和专业音频/视频设备等广泛应用提供创新的多功能解决方案。
投身国产浪潮向上而行,英韧科技再获“中国芯”认可
来源:苏州工业园区12月17日,江苏路芯半导体技术有限公司掩膜版生产项目迎来重要进展——首批工艺设备机台成功搬入。路芯半导体自2023年成立以来,专注于半导体掩膜版的研发与生产,掌握130nm至28n
‍‍12月18日,深圳雷曼光电科技股份有限公司(下称“雷曼光电”)与成都辰显光电有限公司(下称“辰显光电”)在成都正式签署战略合作协议。双方将充分发挥各自在技术创新、产品研发等方面的优势,共同推进Mi
12月18 日,据报道,JNTC与印度Welspun BAPL就车载盖板玻璃的开发及量产签订了投资引进业务合作备忘录(MOU)。资料显示,JNTC是韩国的一家盖板玻璃厂商。Welspun的总部位于印度
2024年度PlayStation游戏奖今日公布,《宇宙机器人》获得年度最佳PS5游戏,《使命召唤:黑色行动6》获得年度最佳PS4游戏。在这次评选中,《宇宙机器人》获得多个奖项,包括最佳艺术指导奖、最
又一地,新型储能机会来了?■ 印度:2032储能增长12倍,超60GW据印度国家银行SBI报告,印度准备大幅提升能源存储容量,预计到2032财年将增长12 倍,超60GW左右。这也将超过可再生能源本身
 “ 担忧似乎为时过早。 ”作者 | RichardSaintvilus编译 | 华尔街大事件由于担心自动驾驶汽车可能取消中介服务,Uber ( NYSE: UBER ) 的股价在短短几周内从 202
在上海嘉定叶城路1688号的极越办公楼里,最显眼的位置上,写着一句话:“中国智能汽车史上,必将拥有每个极越人的名字。”本以为这句话是公司的企业愿景,未曾想这原来是命运的嘲弄。毕竟,极越用一种极其荒唐的
 “ AWS 的收入增长应该会继续加速。 ”作者 | RichardSaintvilus编译 | 华尔街大事件亚马逊公司( NASDAQ:AMZN ) 在当前水平上还有 38% 的上涨空间。这主要得益
今天上午,联发科宣布新一代天玑芯片即将震撼登场,新品会在12月23日15点正式发布。据悉,这场发布会联发科将推出全新的天玑8400处理器,这颗芯片基于台积电4nm制程打造,采用Arm Cortex A
点击蓝字 关注我们电网和可再生能源系统向着更智能、更高效的方向发展助力优化能源分配构建更加绿色和可靠的能源未来12 月 24 日 上午 9:30 - 11:302024 德州仪器新能源基础设施技术直播