大家都熟知具有调节占空比的RC矩形脉冲发生器方案都有一个无法根除的缺点:改变脉冲填充因子(D)会不可避免地改变所生成的频率。笔者曾经描述了具有单独频率和填充因子控制的发生器方案,本文就此问题提供两种新解决方案。

大家都熟知具有调节占空比的RC矩形脉冲发生器方案都有一个无法根除的缺点:改变脉冲填充因子(D)会不可避免地改变所生成的频率。笔者曾经描述了具有单独频率和填充因子控制的发生器方案(参考文献1~3),本文就此问题提供两种新解决方案。图1:此逻辑门矩形脉冲发生器具有可调频率和占空比。

1中的发生器工作原理如下:当将设备开启时,电容器C1放电,因此U1A(U1)的输出为高电平。这个高电平输出通过D1-R4链路对电容器C1快速充电,直到C1达到逻辑元件从低变高的开关电压阈值,此时U1A的输出变低。当U1A的输出变低时,电容器开始通过R1和R2+R3的并联组合遵循指数曲线放电(图2)。当C1达到从高变低的开关阈值时,U1A的输出变为高电平,然后循环往复。

图2:发生器所产生的脉冲序列与输出占空比无关

U1A开关阈值的滞回特性有助于决定所产生的脉冲序列的频率。使用15V的电源电压(Vdd)以及CD4093数据手册(第4页)中所给出的公式,开关频率大致为:

f (单位:kHz) = 1,152/(Rs × C1)

其中,Rs = ((R1 × R2) + (R1 × R3))/(R1 + R2 + R3)

由于电位器的连接方式,电路所看到的电阻R3是可变的,因此电位器可用于设置频率。发生器会在200Hz至1100Hz的频率范围内可靠运行,并在向上至少500kHz的频率下保持运行。

逻辑元件U1B的输入引脚也连接到电容器C1以及电位器R1的中间引脚。调整这个充当分压器的电位器,就可以调整U1B输入引脚6上所看到的C1电压的比例。这个比例越大说明输入会越快达到开关阈值,而其越小则会越慢达到阈值。然后,调整R1就可以平滑地更改逻辑元件U1B开关周期中的时刻,从而调整其输出脉冲的宽度(Uout)。该电路可实现从接近0%到100%的占空比。此外,这种占空比调整不会影响所生成的频率。

图3:此锯齿波脉冲发生器也具有可调节的占空比

3中所示的另一种矩形脉冲发生器可在27Hz到1000Hz的频率范围内运行,并且还可以单独调整频率和填充因子。该电路由锯齿波脉冲发生器(U1 CD40106)和具有可调开关阈值的比较器(U2 LM339)所组成。

锯齿波脉冲发生器使用Q1为U1A CD40106元件所创建的RC发生器提供稳定的电流源。这种组合可在电容器C1上产生一个锯齿形电压,当频率改变时,它的形状不会改变(图4)。电位器R2用来控制电流源,从而控制C1的充电速率,进而决定脉冲频率。电位器R6用来控制比较器(U2A LM339)的开关阈值,并相应地控制输出(Uout)波形的填充因子。电阻器R5和R7用来为调整脉冲填充因子D设置限值。图4:锯齿波的线性上升时间确保了占空比也是电位器设置的线性函数

由于电容C1上的电压随时间线性变化,调节电位器R6时输出信号的宽度也呈线性变化。这就与第一个发生器形成对比,第一个发生器是对填充因子进行非线性调整。

参考文献

  1. The pulse generator with separate adjustment of frequency and duty cycle, M.A. Shustov, Radioamateur (Belarus), No 9, p. 21, 2018.
  2. Rectangular Pulse Generator with Independent Frequency and Duty Cycle Control, M.A. Shustov, Radiolotsman (Russia), No 5, pp. 52–53, 2018.
  3. Independent Width and Frequency Adjustment Bipolar Impulser, M.A. Shustov, Radiolotsman (Russia), No 5, pp. 54–55, 2018.

(本文授权编译自EDN姐妹网站Planet Analog,原文参考链接:Rectangular pulse generators feature independent frequency and duty-cycle adjustment。由赵明灿编译。)

本文转载自《电子技术设计》网站

阅读全文,请先
您可能感兴趣
按照芯联集成的说法,这次并购的主要目的是增强芯联集成对芯联越州的控制力,并利用上市公司的技术、客户和资金优势,重点支持碳化硅、高压模拟IC等新兴业务的发展。
这笔"芯片法案"补贴资金将专门用于支持德州仪器的三座300mm晶圆厂的建设。包括位于德克萨斯州谢尔曼的SM晶圆厂的两期工程(该工厂最终将包括四期工程)和位于犹他州Lehi晶圆厂一个阶段工程。
这场筹划了一年多的收购案,原计划通过现金方式收购昆腾微67.60%的股份,整体估值不超过15亿元人民币,最终因外部市场环境变化等原因导致交易各方未能达成最终共识,无法签署正式收购协议。
移动通信中常用的射频滤波器可分为声表面波(SAW )滤波器 和体声波(BAW )滤波器。星曜半导体专注的TF-SAW是一种什么滤波器?与其他类型的滤波器相比,TF-SAW滤波器的特点是什么?
收购完成后,诺基亚和英飞朗将通过整合双方的技术和市场资源来提高其在光网络领域的地位,尤其是在北美市场。而诺基亚将利用英飞朗的技术优势来提升其在光网络领域的竞争力,并进一步巩固其在全球市场的地位。预计,此次收购将使诺基亚光网络业务的规模增加75%。
前不久的Calterah Day加特兰日活动上,加特兰微电子创始人兼CEO陈嘉澍说,今年加特兰汽车毫米波雷达芯片在国内的市场份额达到20%。这是怎么做到的?...
• 得益于西欧、关键亚洲市场和拉丁美洲市场的增长,以及中国品牌的持续领先,全球折叠屏手机出货量在2024年第二季度同比增长了48%。 • 荣耀凭借其在西欧特别强劲的表现,成为最大的贡献者,成为该地区排名第一的品牌。 • 摩托罗拉的Razr 40系列在北美和拉丁美洲表现良好,为其手机厂商的出货量贡献了三位数的同比增长。 • 我们预计,头部中国手机品牌厂商的不断增加将至少在短期内抑制三星Z6系列在第三季度的发布。
AI技术的发展极大地推动了对先进封装技术的需求,在高密度,高速度,高带宽这“三高”方面提出了严苛的要求。
奕斯伟计算2024首届开发者伙伴大会以“绿色、开放、融合”为主题,从技术创新、产品应用、生态建设等方面,向开发者、行业伙伴等相关方发出开放合作倡议,加速RISC-V在各行各业的深度融合和应用落地,共同推动RISC-V新一代数字基础设施生态创新和产业发展。
2024年 Canalys 中国云计算渠道领导力矩阵冠军厂商分别是:阿里云、华为云和亚马逊云科技(AWS)
文|沪上阿YI路特斯如今处在一个什么样的地位?吉利控股集团高级副总裁、路特斯集团首席执行官冯擎峰一直有着清晰的认知:“这个品牌的挑战依然非常大。首先,整个中国市场豪华汽车整体数据下滑了30%~40%,
文|萝吉今年下半年开始,国内新能源市场正式跨过50%历史性节点,且份额依然在快速增长——7月渗透率破50%,8月份破55%……在这一片勃勃生机万物竞发的景象下,新能源市场占比最高的纯电车型,却在下半年
周二,捷普科技(Jabil)官员与印度泰米尔纳德邦代表团在泰米尔纳德邦首席部长MK Stalin的见证下,签署了一份备忘录。MK Stalin正在美国进行为期17天的访问,旨在吸引新的投资。MK St
天眼查信息显示,天津三星电子有限公司经营状态9月6日由存续变更为注销,注销原因是经营期限届满。该公司成立于1993年4月,法定代表人为YUN JONGCHUL(尹钟撤),注册资本约1.93亿美元,
在德国柏林举行的IFA 2024上,AMD计算和图形业务集团高级副总裁兼总经理Jack Huynh宣布,公司将把以消费者为中心的RDNA和以数据中心为中心CDNA架构统一为UDNA架构,这将为公司更有
‍‍‍‍上市PCB厂商竞国(6108)日前出售泰国厂给予陆资厂胜宏科技后,近日惊传台湾厂惊传12月前关厂,并对客户发布通知预告客户转移生產,最后出货日期2024年12月25日。至於后续台湾厂400名员
近日,又一国产SiC企业宣布实现了主驱突破,并将出口海外。据“行家说三代半”的追踪统计,自2022年起,国内主驱级SiC器件/模块开始在多款车型中得到应用,尤其是2024年,本土供应商的市场份额显著上
8月28-30日,PCIM Asia 2024展在深圳举行。“行家说”进行了为期2天的探馆,合计报道了200+碳化硅相关参展企业(.点这里.)。其中,“行家说”还重点采访了骄成超声等十余家企业,深入了
近日,3个电驱动项目迎来最新进展,包括项目量产下线、投产、完成试验等,详情请看:[关注“行家说动力总成”,快速掌握产业最新动态]青山工业:大功率电驱项目下线9月5日,据“把动力传递到每一处”消息,重庆
随着汽车智能化升级进入深水区,车载ECU(域)以及软件复杂度呈现指数级上升趋势。尤其是多域、跨域和未来的中央电子架构的普及,以及5G/V2X等车云通信的增强,如何保障整车的信息与网络安全,以及防范外部