继PD3.0之后,2021年5月USB-IF在Power Delivery加入了新的规格,并发表PD 3.1规范 (USB Power Delivery Specification Revision 3.1, Version 1.0),以下内容皆以PD 3.1 Spec简称。新的规范中加入EPR (Extend Power Rang) 功能,扩展PD 3.0供电最大瓦数100W的限制,增加到240W (48V 5A) ,并在文件中对其供电要求与行为加以定义,以下章节将由PD 3.1供电规格开始、并介绍EPR这个新功能。

继PD3.0之后,2021年5月USB-IF在Power Delivery加入了新的规格,并发表PD 3.1规范 USB Power Delivery Specification Revision 3.1, Version 1.0,以下内容皆以PD 3.1 Spec简称。

新的规范中加入EPR (Extend Power Rang) 功能,扩展PD 3.0供电最大瓦数100W的限制,增加到240W (48V 5A) ,并在文件中对其供电要求与行为加以定义,以下章节将由PD 3.1供电规格开始、并介绍EPR这个新功能。

PD 3.1供电规格

PD 3.1 Spec中,将原先PD 3.0定义的供电规格纳入SPR (Standard Power Range) ,SPR规格可参考先前我们推出的技术文章:Power Delivery 的源起与规格中的表3,在PD 3.1 Spec中改以SPR PDO 与SPR APDO称之,其供电规格要求与上限100W规则皆不变。另外新增了EPR选配功能,指最大供电瓦数达100W~240W的产品,其设定须满足表1之规范。

EPR PDO在目前规范中包含:

  1. Fixed PDO:定电压输出,在EPR模式中,Fixed PDO指电压 >20V的规格,包含28V、36V以及48V三个选项。
  2. AVS (Adjustable Voltage Supply) APDO:在EPR模式中,电压可以在一定范围区间内调整输出,范围由最低15V到最高有28V、36V和48V三种视瓦数而定 (表2) 。AVS类似PPS功能,差异是AVS不支持Current Limit操作,且以100 mV为单位步阶调整输出电压 (PPS则是 20mV) 。

表 1:支持EPR产品供电规格规范(数据源参考自 PD 3.1 Spec)

表2 : AVS电压范围 (取自 PD 3.1 Spec)

以下举两个例子说明,协助大家理解表格

  1. 输出最大140W,须满足以下条件:
  • SPR Fixed PDO: 5V@3A~5A 、9V@3A~5A、15@3A~5A 、20V@5A
  • EPR Fixed PDO: 28V@5A
  • AVS APDO  15V~28V@140W

      2.而144W须满足条件如下(表1中第二列瓦数区间):

  • SPR Fixed PDO: 5V@3A~5A、9V@3A~5A、15@3A~5A、20V@5A
  • EPR Fixed PDO: 28V@5A、36V@4A
  • AVS APDO: 15V~36V@144W 

看到这里可能各位会疑惑,为什么只有AVS APDO的表示法和其他不一样,参考下表3会发现字段中没有描述最大电流的地方,反而是以瓦数表示。这是因为AVS操作电流会受限于瓦数,随当下操作电压而改变,所以电流并非定值,因此应参考瓦数而非电流。

表3 : AVS APDO格式 (取自 PD 3.1 Spec)

其中144W例子中AVS  APDO对于28.8V~36V操作电压下的电流条件,可以参考下图1会较容易理解,图中蓝色区域表示AVS可操作范围,其中又可分为两区加以说明:

  1. 黄色标示的A区是在不超过最大瓦数前提下,可以操作在5A的电压范围,即表1中第一个叙述– 15V~28.8V@5A。
  2. 绿色标示区间B,则是受限于瓦数限制,操作电流要视当下电压而定,因此以公式描述–28.8V~36V@(144/AVS Voltage)A。

图1:AVS供电模式示意图(取自 PD 3.1 Spec并于图上另加批注协助说明)

值得注意的是,表1中N/A的部分严格规定为不可支持,即140W以下产品不可支持36V与48V、180W以下产品不可支持48V。

另外有一类型产品设计为Shared Capacity Charger,指其产品上的可供电瓦数是共享的。当部分资源已被使用,剩下埠可使用瓦数为总瓦数扣掉已被使用的部分,再做分配,此时实际可用瓦数称为Equivalent PDP Rating,设定条件参考整理如下表(表4)。

表 4:支持EPR产品在Shared Capacity Power供电模式条件(数据源参考自 PD 3.1 Spec)

举一产品设计为例,输出总瓦数最大为250W,2埠单独使用时分别可以支持到160W:

  • 单独使用规格应为 (5V@3A~5A、9V@3A~5A、15@3A~5A、20V@5A、28V@5A、36V@4.44A、15V~36V@160W)。
  • 当其中一埠已使用100W,则另一埠Equivalent PDP Rating为150W,此时供电条件如下: 5V@3A~5A、9V@3A~5A、15@3A~5A、20V@5A、28V@5A、36V@4.16A、15V~36V@150W。

EPR_Source_Capabilities

先前文章有提到,供电能力会宣告在Source_Capabilities中,同样的概念导入EPR模式,因此在PD 3.1 Spec中新增了EPR_Source_Capabilities,支持EPR供电产品将其规格表示在此信息中。

如下取自PD 3.1 Spec的示意图,Data Object前7组填入的是SPR PDO内容,且内容需要与Source_Capabilities一样,若SPR PDO不足7组,则写入0补满。

第8组开始写入EPR PDO内容,最多可以填到第13组,写入顺序需由Fixed PDO电压由低到高,而后接着一组AVS APDO。

图2:EPR_Source_Capabilities格式(取自 PD 3.1 Spec)

EPR模式流程

进入EPR模式供电之前,Source/Sink需要先建立Explicit PD Contract,在这个过程中,双方分别在Source Capabilities与 Request 信息中宣告自己是否有支持EPR模式,作为后面若要进EPR模式前检查双方能力的参考依据。进入EPR模式需要透过一沟通与检视的过程,步骤条列式整理如下:

Enter EPR Mode

  1. Sink 发送EPR_Mode信息,其中Data Object中设定为Enter,表示要进EPR模式的沟通 (EPR_Mode信息依其中内容设定,表示不一样的用途,可参考图3)
  2. Source检查双方都有支持EPR模式,并且当下状态有能力支持EPR模式供电。传送设定为Enter Acknowledged的EPR_Mode信息,表示Source目前状态允许进EPR模式
  3. 除了带线的产品外,Source必须要确认使用的线材规格可以承受EPR模式,藉由发送Discover ID Request,确认线材规格有支持EPR模式,且可承受最大电压为50V、电流为5A。
  4. 若以上确认都没问题,接着Source 会传送Data Object中设定为Enter Succeeded的EPR_Mode信息给Sink,此时成功进入EPR模式并进入下一阶段步骤

图3:EPR_Mode讯息(取自 PD 3.1 Spec)

PD Negotiate in EPR Mode

  1. Source发送EPR_Source_Capabilities宣告EPR模式中供电能力
  2. Sink依照需求选择PDO,填入EPR_Request中并传送给Source
  3. 当Source确认可满足要求后回传Accpet,并在调整好供电状态后,再传送PS_RDY完成这一次的沟通

在EPR模式中Source会侦测CC状态,闲置过久Source会发起Hard Reset,导致EPR模式中断,因此Sink每隔一段时间要传送EPR_KeepAlive 信息以维持在EPR模式中,当Source收到此信息会响应GoodCRC与EPR_KeepAlive_Ack,且重置计时。

Exit EPR Mode

Source / Sink可能因为各种因素,使的任何一方想要回到SPR模式,但在此之前,必须先将电压下降到至少定电压20V,方法有如下两种:

  1. Source 发送EPR_Source_Capabilities重新沟通,但其中宣告不包含EPR PDO
  2. Sink发送EPR_Requst,并在内容中设定只要求SPR PDO ,亦即不包含EPR PDO

上述两个动作任一完成后,电压应下降到20V或者更低,此时Source/Sink任一方都可发起EPR_Mode并将信息中Data Object中设定为Exit,表示要离开EPR模式,当任何一方发出这个信息后,Source需在tFirstSourceCap参数时间内送Source Capabilities,以重新建立PD Contract ,并回到SPR模式。

图4 : EPR模式范例流程示意图  (中间省略GoodCRC )

Type-C cable and Connector更新

目前"Universal Serial Bus Type-C Cable and Connector Specification"更新到2.1的版本,更新的重点也是把EPR的功能加进这次的规格里,根据Spec的说明各种速度都可以支持EPR的功能。

表5 : Cable类别 (取自 Type-C Cable and Connector Spec)

EPR Cable

  1. EPR的线缆是必须含有E-Marker来宣告产品的能力。
  2. E-Marker必须把EPR Mode Capable bit做设定并且须宣告支持50 V和5 A。
  3. EPR的线缆最小的工作电压必须达到53.65 V。

经由一些实验得知,在以下的情况下Vbus的脚位上会有比较明显的毁损:

Source 电流附载突然移除时,电压会急速变化。

Sink 接收端的Vbus脚位在长时间处于高电压的状态下。

Cable 

a.    Vbus在微秒内持续震荡。

b.    0.1~1 微秒内,发生电流附载突然移除会导致IR的电压突然下降。

结论

USB-IF近年来持续的研拟并推出新方案,使PD功能更加完善。这一次透过EPR模式扩展规格,使这项技术可以更广泛的被应用在各类型的产品上,但也因为提供更高瓦数的充电方式,使规范对于EPR模式相较于以往PD3.0有较多的限制,包含EPR模式允许使用的电压选择与以往不同,少了选择性支持的弹性空间,并且产品必须导入EPR模式的运作方式等等,为的是在扩充功能的同时,更严谨的审视安全性并且提升产品间的兼容性,因此未来将要导入的产品,也需要更谨慎评估与应用这项功能。

参考文献

USB Type-C® Cable and Connector Specification Revision 2.0

USB Power Delivery Specification Revision 1.0 Version 1.2

USB Power Delivery Specification Revision 2.0 Version 1.3

USB Power Delivery Specification Revision 3.0 Version 2.0

作者

GRL台湾测试工程师 张文馨 Cindy Chang

毕业于国立成功大学材料所。具三年多的Power Delivery相关测试经验,熟悉Thunderbolt PD、USB-IF PD Compliance、QC (Qualcomm Quick Charge) 等测试规范。目前在GRL台湾负责PD测试,乐于协助客户PD方面的问题,以顺利取得认证。

责编:Luffy Liu

  • 123
    1
您可能感兴趣
这不仅验证了国产自研高压抗辐射SiC功率器件的空间适应性及其在航天电源中的应用,还对SiC功率器件综合辐射效应进行了深入研究。
即使在最佳设计中,噪声和干扰也会悄然降低信噪比、掩盖所需信号并影响测量精度和可重复性。示波器和数字化仪等数字化仪器集成了多种功能,用于表征、测量和减少噪声对测量的影响。
我国在量子精密测量领域取得了重大突破,由南方电网公司牵头研发的全球首套±800kV特高压直流量子电流传感器顺利通过了新产品技术鉴定,我国在量子技术应用方面迈出了重要一步......
此次制裁不仅涉及传统的军事和国防领域,还扩展到了高科技产业。BIS指出,上述实体清单被认为与中国高超音速飞行器、专有软件的开发、设计和建模有关……
利扬芯片拟收购李玲、李瑞麟、封晓涛、贾艳雷、孙絮 研及李亮合计持有的国芯微 100%股权。最终收购价格需在完成尽职调查及审计、 评估程序后经协商确定,并在正式的转让协议中明确......
光电探测器的性能因材料不同、结构不同、制备工艺及应用场景的不同而存在较大的差异。性能指标之间往往存在制约,如暗电流与输出电流、灵敏度与响应度、可靠性与灵敏度等需要权衡。对于性能表征也是如此,例如高响应度与高精度电流表征无法同时进行。
TEL宣布自2025年3月1日起,现任TEL中国区地区总部——东电电子(上海)有限公司高级执行副总经理赤池昌二正式升任为集团副总裁,同时兼任东电电子(上海)有限公司总裁和东电光电半导体设备(昆山)有限公司总裁。
预计在2025年,以下七大关键趋势将塑造物联网的格局。
领域新成果领域新成果4月必逛电子展!AI、人形机器人、低空飞行、汽车、新能源、半导体六大热门新赛道,来NEPCON China 2025一展全看,速登记!
本次股东大会将采取线上和线下相结合的混合形式召开,股东们可选择现场出席或线上参会。
作为功率半导体领域的创新领导者,Power Integrations(以下简称:PI)始终专注于前沿技术研发,持续为全球客户提供突破性解决方案。PI 在功率变换架构、电力电子驱动系统及汽车电子领域构建
Mar. 5, 2025 产业洞察根据TrendForce集邦咨询最新研究,TSMC(台积电)近日宣布提高在美国的先进半导体制造投资,总金额达1650亿美元,若新增的三座厂区扩产进度顺利,预计最快20
今日光电     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光引未来...欢迎来到今日光电!----追光逐电 光引未来----编者荐语特征提取是计算机
差分运算放大电路,对共模信号得到有效抑制,而只对差分信号进行放大,因而得到广泛的应用。差分电路的电路构型    上图是差分电路。    目标处理电压:是采集处理电压,比如在系统中像母线电压的采集处理,
市值一夜蒸发2900亿”作者|王磊编辑|秦章勇特斯拉陷入一个怪圈。马斯克的权力越来越大,但特斯拉的股价却跌得越来越惨。就在昨天,特斯拉股价又下跌了4.43%,一天之内蒸发406亿美元,约合人民币295
从上表可知,2024年前三季度全球40强PCB企业总营收约416.7亿美元,同比增长7.6%。其中,营收排名第一位的是臻鼎科技(36.05亿美元),排名第2~5位的分别是欣兴电子(26.85亿美元)、
先问大家一个问题:你有多久没看电视了?对老局来说,最近这几年除了春晚和国庆阅兵,其他情况下,基本已经不会看电视了。当然了,连着PS5打游戏那是另外一回事。不过,虽然我们不怎么看电视了,但电视的市场却并
3月4日,中国商务部接连发布三则公告,对26家美国实体/企业采取不同的管制措施。商务部公告2025年第13号显示,根据《中华人民共和国出口管制法》和《中华人民共和国两用物项出口管制条例》等法律法规有关
今日光电     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光引未来...欢迎来到今日光电!----追光逐电 光引未来---- 来源:时光沉淀申明:感
如果说华为代表了国产手机芯片的最高水平,那么紫光展锐无疑就是国产中低端芯片最大的依持了。3月3日,巴塞罗那MWC世界移动通信大会上,紫光展锐正式发布手机芯片T8300。据了解,T8300采用的是6nm