使用分立元件构建电流监控器似乎显得多余,然而在某些情况下,特别是在有现成的低压元件时,使用分立元件的电路来进行电流监控可能是最好的方法。本设计实例中的电路用于监控伺服系统+180/−180V电源的两个电源轨中的电流。

专用集成电路的应用使电流监控变得越来越简单。各种电流监控集成电路随时买得到,而且多数情况下都工作得很好,还有各种仪表放大器也是如此。使用分立元件构建电流监控器似乎显得多余,然而在某些情况下,特别是在有现成的低压元件时,使用分立元件的电路来进行电流监控可能是最好的方法。

本设计实例中的电路用于监控伺服系统+180/−180V电源的两个电源轨中的电流。图1显示了用于监控负轨的电路相关部分。监控正轨的电路只需用PNP设备替换NPN即可。采用价格便宜的双晶体管和1%电阻来设置Iref以及Re1和Re2可获得最佳效果。Rsense应为0.1%并且具有足够的额定功耗。

DI2-F1-201908.jpg
图1:负轨监控电路。

图1所示电路和所有类似拓扑结构的设计灵感均来自电流镜拓扑结构,以及Re2上的电流随Rsense上的电流、Rc1上的电压随Rsense上的电压线性变化的这个概念。

该电路的作用依赖于Re1和Re2。让Iref相当小而Re2和Re1相当大,当Re2和Re1的值相等时,相对于Rsense上的电压,发射极的电压将增加。当负载在无负载和满负载之间变化时,这将反过来减小输出设备上Vce的变化。

因此,审慎而明智地选择Iref、Re1、Re2、Rc2和Rc1可以防止Q2进入饱和状态并且不会超过晶体管的最大工作电压。请记住,hoe=I(集电极)/VA(早期电压)意味着减少Ic的变化也会减少β的变化,从而改善线性度。Rc是Rc1和Rc2之和,因此比率Rc1/Rc确定无负载时Vout−处的偏移。满载时Rsense上的电压决定了Re2和Rc1的电流变化,从而决定了Vout−的满量程输出。一旦Iref值建立,就可以很容易计算出Rc和Rd上所需的无负载电压。通过使用发射极电阻,可以显著降低Vce变化对Q2的β的影响,而且从仿真数据可以看出,β的变化对负载电流和输出电压之间相关性的影响相对较小。鉴于这些结果,采用类似于Wilson电流镜的配置似乎并没有必要。

图2和图3显示了用恒流源产生Iref的替代解决方案。如果Vss稳定且没有纹波,则可以省略恒流源发生器,并且可以通过设定Rd值来提供Iref

DI2-F2-201908.jpg
图2:用恒流源产生Iref的替代解决方案。

DI2-F3-201908.jpg

图3:设置FET偏置,使启动时Iref不会导致Vce或Vds超过最大值。

图4所示的电路反转了Vout-,消除了偏移,并将输出调整到所需范围,同时还可以过滤输出端出现的电源纹波或负载尖峰。若配以带有ADC的微控制器,则可以将电路简化为仅反转Vout-

DI2-F4-201908.jpg
图4:反转Vout-消除了偏移,将输出调整到所需范围,并可以过滤输出端的电源纹波或负载尖峰。

如果满载时VRe1至少比VRsense大10倍,那么Q2将不会进入饱和状态,并且:

DI2-E1-201908.png


DI2-E2-201908.png

Iref=IRe1,无负载,即Iload=0,那么:

DI2-E3-201908.png

Vccs是恒流源两端的电压,IRe1约等于Iref,Vbe可以为0.6到0.65V:

DI2-E4-201908.png

Vce是Q2上无负载时所需的最大电压。IRe2约等于Iref,那么:

DI2-E5-201908.png

Vout-无负载时所需的失调电压决定了Rc1的值:

DI2-E6-201908.png

由于I(Rsense)=Iref/10,因此可以估算满载时的IRe2

DI2-E7-201908.png

在最大负载电流下,Vout−的满量程值约为:

DI2-E8-201908.png

采用LTspice电路仿真软件产生图5、图6和图7的曲线,以显示电路工作期间的线性度、滤波效果以及Vce和Vds。负载电流从0增加到1安培,输出电压叠加在负载电流上。其结果与实际的电路性能非常接近。

由于负载电流尖峰值持续时间短,滤波防止了跳闸。隔离虽可能没有必要,但在设计高压电路时应始终予以考虑。

DI2-F5-201908.jpg
图5:将图4中25nF的电容C1去掉后的Vout

DI2-F6-201908.jpg
图6:图4中加上25nF电容C1时的Vout

DI2-F7-201908.jpg
图7:有源设备上的电压。

(原文刊登于ASPENCORE旗下EDN英文网站,参考链接:High-voltage current sensing with low-voltage transistors。)

本文转载自《电子技术设计》网站

您可能感兴趣
安森美半导体此次裁员决策并非毫无预兆,主要原因是市场需求的下降和公司收入的减少。
从运算放大器、逻辑功能芯片到高端处理器等基本抗辐射器件已经存在多年,并提供多种辐射耐受等级。尽管抗辐射是必要条件之一,仅靠器件本身并不足以保证整个电路的抗辐射性能。
此次收购符合南芯科技的长期战略规划,通过整合昇生微在嵌入式芯片设计上的技术专长和研发团队,南芯科技将强化其在硬件、IP、算法及软件等方面的技术优势……
物理世界对智能的需求正在推动边缘设备支持复杂计算,如人工智能、机器学习、数字信号处理和数据分析等。这增加了能源需求,而这些设备通常处于能源匮乏状态。因此,迫切需要从根本上重新考虑制造这些设备的计算硬件以提高能源效率。
英诺赛科此次上市标志着作为氮化镓功率半导体领域的龙头企业正式进入资本市场,并成为港股“第三代半导体”第一股。英诺赛科的开盘价为31港元,较发行价上涨了0.5%,但随后股价跌破了发行价,市值约为270亿港元......
自1984年,意法半导体首次进入中国,成为首批在中国开展业务的半导体公司。意法半导体CEO Jean-Marc Chery日前表示,中国市场是不可或缺的,是电动汽车规模最大、最具创新性的市场,与中国本地的制造工厂达成合作,具有至关重要的作用。他还表示,意法半导体正在采用在中国市场学到的最佳实践和技术,并将其应用于西方市场,“传教士的故事结束了”。
TEL宣布自2025年3月1日起,现任TEL中国区地区总部——东电电子(上海)有限公司高级执行副总经理赤池昌二正式升任为集团副总裁,同时兼任东电电子(上海)有限公司总裁和东电光电半导体设备(昆山)有限公司总裁。
预计在2025年,以下七大关键趋势将塑造物联网的格局。
领域新成果领域新成果4月必逛电子展!AI、人形机器人、低空飞行、汽车、新能源、半导体六大热门新赛道,来NEPCON China 2025一展全看,速登记!
本次股东大会将采取线上和线下相结合的混合形式召开,股东们可选择现场出席或线上参会。
插播:历时数月深度调研,9大系统性章节、超百组核心数据,行家说储能联合天合光能参编,发布工商业储能产业首份调研级报告,为行业提供从战略决策到产品方向、项目资源的全维参考!点击下方“阅读原文”订阅又一地
Mar. 5, 2025 产业洞察根据TrendForce集邦咨询最新研究,TSMC(台积电)近日宣布提高在美国的先进半导体制造投资,总金额达1650亿美元,若新增的三座厂区扩产进度顺利,预计最快20
今日光电     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光引未来...欢迎来到今日光电!----追光逐电 光引未来----图1 采用自上而下方法实
国际电子商情讯,昨日(3月3日)晚间,TCL科技发布公告称,拟以115.62亿元收购深圳市华星光电半导体显示技术有限公司(以下简称深圳华星半导体)21.5311%股权。A股市场又一起百亿并购2025年
插播:历时数月深度调研,9大系统性章节、超百组核心数据,行家说储能联合天合光能参编,发布工商业储能产业首份调研级报告,为行业提供从战略决策到产品方向、项目资源的全维参考!点击下方“阅读原文”订阅刚开年
今日光电     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光引未来...欢迎来到今日光电!----追光逐电 光引未来----来源: 逍遥设计自动化申
面板价格预测(3月)根据TrendForce集邦咨询旗下面板研究中心《TrendForce 2025面板价格预测月度报告》最新调研数据:2025年3月,电视面板与显示器面板价格预期上涨,笔记本面板价格
新品EVAL-2ED3146MC12L–带辅助电源的6.5A双通道隔离栅极驱动器评估板EVAL-2ED3146MC12L评估板用于评估功率半桥电路中的2ED3146MC12L 6.5A隔离栅极驱动器I
                                                                                                
Mar. 5, 2025 产业洞察根据TrendForce集邦咨询最新《5G时代下的突破机会:论全球电信商FWA布局》报告指出,随着美国电信商T-Mobile、Verizon转移营运重心至拓展建置成本