反激式转换器在连续导通模式 (CCM) 和非连续导通模式 (DCM)下都可以工作。但对许多低功耗和低电流应用而言,DCM反激式转换器更加紧凑而且成本更低。本文将详细介绍此类转换器的设计步骤。

反激式转换器在连续导通模式 (CCM) 和非连续导通模式 (DCM)下都可以工作。但对许多低功耗和低电流应用而言,DCM反激式转换器更加紧凑而且成本更低。本文将详细介绍此类转换器的设计步骤。

DCM操作的特点是转换器的整流器电流在下一个开关周期开始之前即减小至零。在切换前将电流降至零将减少场效应晶体管 (FET) 的耗散并降低整流器损耗,而且通常也会降低变压器的尺寸要求。

而CCM操作则直到整个开关周期结束时仍保持整流器的电流传导。我们在“关于反激式转换器的几大关键设计考量因素”和 “CCM反激式转换器的设计细节及损耗计算”这两篇文章中曾介绍了反激式转换器的设计考量和CCM 反激式转换器的功率级公式。CCM操作最适合中高功率应用,但如果是低功率应用,则可以使用DCM 反激式转换器,请继续阅读下文。

图1显示了一个简化的反激原理图,它可以在DCM 或 CCM 模式下运行,并根据时序在模式之间进行切换。为了保持电路在DCM 模式下操作,如本文将要评估的,关键组件的开关波形应具有图 2所示的特性。

在占空比周期D内,FET Q1导通,电路开始工作。T1原边绕组中的电流始终从零开始,上升至由原边绕组电感、输入电压和导通时间t1决定的峰值。在此 FET 导通时间内,二极管 D1因T1 的副边绕组极性而反向偏置,迫使所有输出电流在t1和t3期间由输出电容器 COUT 提供。

图 1:可在DCM或CCM模式下运行的简化反激式转换器原理图

当 Q1 在周期 1-D 期间关断时,T1的副边电压极性反转,使D1 将电流传导至负载并对 COUT进行充电。D1中的电流在t2期间从其峰值线性下降至零。一旦T1存储的能量耗尽,在剩余时间段 t3 中只会剩余振铃。这种振铃主要是由于T1 的磁化电感以及 Q1、D1 和 T1 的寄生电容造成的。这在 t3 期间通过Q1的漏极电压很容易看出来,该电压从 VIN 加反射输出电压下降回VIN,因为一旦电流截止,T1就无法支持电压。(注意:t3 中若没有足够的死区时间,将可能进入CCM操作。)CIN 和 COUT 中的电流与Q1和D1中的电流相同,但没有直流偏移。

图 2 中的阴影区域A和B突出显示了变压器在t1和t2期间的伏微秒积,它们必须保持平衡以防止饱和。区域“A”代表 (Vin/Nps)×t1 ,而“B”代表 (Vout+Vd)×t2,均以副边为参考。Np/Ns是变压器原边与副边的匝数比。

图2:DCM反激式转换器的关键电压和电流开关波形以及设计人员须指定的几个关键参数。

表1详细说明了DCM相对于CCM的特性。DCM的一个关键属性是,无论变压器的匝数比如何,具有较低的原边电感都会降低占空比。它让您可以限制设计的最大占空比。如果想要使用特定控制器或保持在特定的导通或关断时间限制之内,这一点可能很重要。较低的电感需要较低的平均能量存储(尽管具有较高的峰值FET电流),与CCM设计相比,通常也允许使用更小的变压器。

DCM 的另一个优点是这种设计消除了标准整流器中的 D1 反向恢复损耗,因为电流在 t2 结束时为零。反向恢复损耗通常表现为 Q1 中耗散的增加,因此消除它们会降低开关晶体管上的应力。输出电压越高,该优势愈加明显,因为整流器的反向恢复时间也随着二极管额定电压的增大而增加。

DCM的优点 DCM的缺点
原边电感低于CCM 更高的峰值原边电流
通过电感设置最大占空比 更高的峰值整流器电流
可以使用更小的变压器 增加了输入电容
无整流器反向恢复损耗 增加了输出电容
无(或最小)FET 导通损耗 可能会增加电磁干扰
控制回路中没有右半平面零点 比 CCM 更宽的占空比操作
低输出功率的最佳选择 增加了带宽变化

表1:DCM 反激式设计相对于CCM设计的优缺点

开始设计之前,开发人员需要了解几个关键参数以及基本的电气规范。首先要选择开关频率 (fsw)、所需的最大占空比 (Dmax)以及估计的目标效率。然后根据公式1计算出时间t1:

接下来,用公式 2 估算变压器的峰值原边电流 Ipk。对于公式 2 中的 FET 导通电压 (Vds_on) 和电流采样电阻电压 (VRS),先假设较小的0.5 V压降比较适合,稍后可以更新压降值。

根据图2中A和B面积相等,通过公式3计算所需的变压器匝数比Np/Ns:

其中 x 是t3所需的最小空闲时间(从x = 0.2开始)。

如果想要改变Np/Ns,则调整 Dmax并再次迭代计算。

接下来,用公式 4 和 5 来计算 Q1 (Vds_max) 和 D1 (VPIV_max) 的最大“平顶”电压:

这些组件常常会因变压器漏电感而产生振铃,根据经验,实际值预计要比通过公式4和5得出的值高10-30%。如果Vds_max高于预期,减少Dmax可以降低它,但VPIV_max会增加。此时需要确定哪个组件电压更关键,并在必要时再次迭代计算。

用公式 6 计算 t1_max,其值应与公式1接近:

用公式 7 计算所需的最大原边电感:

如果选择的电感低于公式 7 算出的电感,则根据需要进行迭代计算,增加x并减少Dmax,直到Np/Ns和Lpri_max 等于所需要的值。

然后,利用公式 8来计算 Dmax

并分别利用公式9 和 10 计算最大Ipk及其最大均方根 (RMS) 值:

根据所选控制器的电流采样输入最小电流限制阈值 Vcs(公式 11),计算允许的最大电流采样电阻值:

使用公式 9得到的Ipkmax值和RS来验证假设的FET Vds压降和公式2中的采样电阻器VRS 是否接近;如果差别较大,则再次迭代。

利用公式 12 和 13以及公式10 的结果,来计算RS的最大耗散功率和Q1的传导损耗:

FET 开关损耗通常在Vinmax处最高,因此最好利用公式14计算整个VIN范围内的Q1开关损耗:

其中Qdrv是FET总栅极电荷,Idrv是预期的峰值栅极驱动电流。

公式 15 和 16 用于计算FET非线性Coss电容充电和放电的总功率损耗。公式15中的被积函数应与0 V至实际工作Vds之间的实际FET Coss数据表曲线严格匹配。Coss损耗通常在高压应用或使用极低RDS(on) FET时最大,其Coss 值也较大。

通过将公式 13、14和16的结果相加来估算总的FET 损耗。

公式17表明该设计中的二极管损耗将大大简化。请确保选择额定副边峰值电流远大于 IOUT的二极管。

输出电容通常选择公式 18 或 19 中值较大的那一个,这两个公式根据纹波电压和等效串联电阻(公式 18)或负载瞬态响应(公式 19)来计算电容:

其中 ∆IOUT 是输出负载电流的变化,∆VOUT 是允许的输出电压偏移,而fBW 是估计的转换器带宽。

用公式 20 计算输出电容器 RMS 电流:

用公式 21 和 22 估计输入电容器的参数:

公式 23、24 和 25 总结了三个关键的波形时间间隔及其关系:

如果需要额外的副边绕组,公式 26 可以轻松计算出额外的绕组 Ns2:

其中 VOUT1 和 Ns1 是稳压输出电压。

变压器原边RMS 电流与公式 10 中的 FET RMS 电流相同;变压器副边RMS 电流如公式 27 所示。变压器磁芯必须能够在不饱和的情况下处理 Ipk。当然还要考虑磁芯损耗,但这不在本文讨论范围之内。

从上述步骤中可以看出,DCM 反激式设计是一个迭代过程。开关频率、电感或匝数比等初始假设可能会根据后面的计算结果(例如功耗)改变。别怕麻烦,根据需要多次迭代执行设计步骤,以实现您需要的设计参数。只要付出努力,就可以实现最佳的DCM反激设计,提供低功耗、紧凑和低成本的解决方案,满足电源转换器的需求。

(参考原文:Designing a DCM flyback converter

责编:Amy Guan

 

本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
阅读全文,请先
您可能感兴趣
金刚石以其优异的性能而闻名,长期以来一直有望应用于各种领域,但其作为半导体的潜力却一直面临着商业化的障碍。Advent Diamond公司在解决关键技术难题方面取得了长足进步,特别是制造出了掺磷的单晶金刚石,从而形成了n型层。
CEA-Leti现已宣布启动FAMES项目,这是一条全耗尽绝缘体上硅(FD-SOI)试验线,用于非易失性嵌入式存储器、3D集成、射频元件和电源管理IC等应用,以确保欧洲主权。在FAMES试验线启动之际,笔者对CEA-Leti首席技术官Jean-René Lèquepeys进行了独家专访。
在这份榜单中,国家电网有限公司以5459亿美元的营收连续多年稳居榜首,而京东集团则以卓越的表现成为排名最高的大陆民营企业。
台积电(TSMC)公布了最新的A16芯片制造工艺,改变了技术领先者的游戏规则。该工艺可能领先英特尔的18A节点。但目前还不清楚哪家公司将赢得工艺技术冠军。
希荻微表示,通过吸收Zinitix成熟的专利技术、研发资源和客户资源,可以快速扩大其产品品类,特别是在手机和可穿戴设备等领域的技术与产品布局。此外,Zinitix的摄像头自动对焦芯片产品线与希荻微现有的音圈马达驱动芯片产品线有较强的协同性。
关于英诺赛科与宜普公司的两项包括氮化镓技术在内的专利侵权案有了最终判决。美国国际贸易委员会的裁定结果是,英诺赛科侵权宜普公司的其中一项专利。 不过英诺赛科并不同意该判决,判决中提到的英诺赛科侵权EPC的294专利 ,英诺赛科认为,EPC的294专利是无效的。
• 得益于西欧、关键亚洲市场和拉丁美洲市场的增长,以及中国品牌的持续领先,全球折叠屏手机出货量在2024年第二季度同比增长了48%。 • 荣耀凭借其在西欧特别强劲的表现,成为最大的贡献者,成为该地区排名第一的品牌。 • 摩托罗拉的Razr 40系列在北美和拉丁美洲表现良好,为其手机厂商的出货量贡献了三位数的同比增长。 • 我们预计,头部中国手机品牌厂商的不断增加将至少在短期内抑制三星Z6系列在第三季度的发布。
AI技术的发展极大地推动了对先进封装技术的需求,在高密度,高速度,高带宽这“三高”方面提出了严苛的要求。
奕斯伟计算2024首届开发者伙伴大会以“绿色、开放、融合”为主题,从技术创新、产品应用、生态建设等方面,向开发者、行业伙伴等相关方发出开放合作倡议,加速RISC-V在各行各业的深度融合和应用落地,共同推动RISC-V新一代数字基础设施生态创新和产业发展。
2024年 Canalys 中国云计算渠道领导力矩阵冠军厂商分别是:阿里云、华为云和亚马逊云科技(AWS)
点击蓝字 关注我们德州仪器全球团队坚持克服挑战,为电源模块开发新的 MagPack™ 封装技术,这是一项将帮助推动电源设计未来的突破性技术。  ■ ■ ■作为一名经验丰富的马拉松运动员,Kenji K
文|沪上阿YI路特斯如今处在一个什么样的地位?吉利控股集团高级副总裁、路特斯集团首席执行官冯擎峰一直有着清晰的认知:“这个品牌的挑战依然非常大。首先,整个中国市场豪华汽车整体数据下滑了30%~40%,
‍‍据龙芯中科介绍,近日,基于龙芯3A6000处理器的储迹NAS在南京师范大学附属小学丹凤街幼儿园、狮山路小学、南京大学附属中学等学校相继落地。储迹NAS是基于最新的龙芯CPU--3A6000,其代表
近日A股上市公司陆续完成2024年上半年业绩披露,其中24家SiC概念股上半年合计营收同比增长14.58%至1148.65亿元,研发费用同步增长7.22%至69.16亿元。尤为值得注意的是,天岳先进、
点击蓝字 关注我们准确的图像深度和细节对于安保摄像头、人脸识别设备和机器视觉设备至关重要,可以提供更真实且高保真的观看体验。为在具体应用中达到这一效果,需要具备某些图像传感器功能,其中之一就是自适应局
8月28-30日,PCIM Asia 2024展在深圳举行。“行家说”进行了为期2天的探馆,合计报道了200+碳化硅相关参展企业(.点这里.)。其中,“行家说”还重点采访了长飞先进等众多企业,深入了解
展位信息深圳跨境电商展览会(CCBEC)时间:2024年9月11-13日 9:30-17:30地点:深圳国际会展中心(宝安)展馆:16号馆 16D73/16D75 展位报名注册准备好“观众注册”入场二
9月6日,“智进AI•网易数智创新企业大会”在秦皇岛正式举行,300+企业高管及代表、数字化技术专家齐聚一堂,探讨当AI从技术探索迈入实际应用,如何成为推动组织无限进化的新引擎。爱分析创始人兼CEO金
在苹果和华为的新品发布会前夕,Counterpoint公布了2024年第一季度的操作系统详细数据,数据显示, 鸿蒙操作系统在2024年第一季度继续保持强劲增长态势,全球市场份额成功突破4%。在中国市场
随着汽车智能化升级进入深水区,车载ECU(域)以及软件复杂度呈现指数级上升趋势。尤其是多域、跨域和未来的中央电子架构的普及,以及5G/V2X等车云通信的增强,如何保障整车的信息与网络安全,以及防范外部