该系列的第一部分着重介绍了影响谐振转换器设计的关键寄生参数,以及元件的选择标准和变压器设计。这一部分将重点介绍谐振转换器中的同步整流器(SR)设计的注意事项。

该系列的第一部分着重介绍了影响谐振转换器设计的关键寄生参数,以及元件的选择标准和变压器设计。这一部分将重点介绍谐振转换器中的同步整流器(SR)设计的注意事项。

谐振转换器的运作比脉宽调制转换器可能要复杂得多。以图1中的电感-电感-电容串联谐振转换器(LLC-SRC)为例,在给定负载条件下,以及给定开关频率( fsw)和串联谐振频率(fr)的相对大小条件下,LLC-SRC一般会有四种工作状态。当fsw < fr时,在有源开关(Q1或Q2)关断之前,整流二极管中的电流为零。因此,在将金属氧化物半导体场效应晶体管(MOSFET)用作整流器(即SR)时,为了避免整流器电流反向流动,SR必须以小于50%的占空比关断。否则,过大的循环电流会损害转换器的效率。

图1:电感-电感-电容串联谐振转换器(LLC-SRC)可提供软开关的特性,支持高频工作。

 

图2:LLC-SRC在各种情况下的工作状态:重载且fsw < fr(a);轻载且fsw < fr(b);重载且fsw > fr(c);轻载且fsw > fr(d),这些工作状态表示,如果要使用SR,则需要进行电流检测,以避免输出整流器上有反向电流。

当fsw < fr且有重载时,整流器的导电时间实际上为0.5/fr。因此在fsw < fr时,在重载下可以将SR的导通时间限制在略小于0.5/fr,而在轻载下则可以禁用SR [1]。但是这种开环的SR控制方法并不能提升转换器的效率。

另一种更可靠的方案是通过感测MOSFET的漏极-源极电压(VDS)来实现SR控制[2](图3)。这种SR控制方法是将MOSFET 的VDS与两个不同的电压阈值进行比较,比较结果将用于导通和关断MOSFET。一些较新型的VDS感测SR控制器(例如德州仪器(TI)的UCC24624)甚至有三个电压阈值,第三个阈值用于激活一个比例栅极驱动器,从而用最小的延迟快速关断SR。图3:在不同的VDS电平下,VDS感测SR的导通和关断。

值得注意的是,电压阈值都是毫伏级别的,所以需要高精度的传感电路。因此,集成电路通常会被用来实现VDS感测的方案,该电路包括了VDS电平(通常小于200V)和fsw限制范围(通常小于400kHz)。由于VDS感测SR控制方案具有局限性,您将需要另一种SR控制方案来优化高压和高频谐振转换器中的SR传导。

另一种控制高频谐振转换器的方案是使用Rogowski线圈[3]后接积分器和比较器。图4是该方案的框图,解释了如何在“电容-电感-电感-电感-电容串联谐振双有源桥式转换器(CLLLC-SRes-DAB)”上使用Rogowski线圈进行SR控制[4]。Rogowski线圈是一个空心的线圈绕组,会被放置在变压器绕组上用于电流检测。当时变电流流过线圈时,电流产生的磁通量会在线圈上产生感应电压。感应电压与最初的时变电流之间将有90度的相位差。

图4:Rogowski线圈SR控制方案可在CLLLC-SRes-DAB转换器中实现精确的高频SR感测和控制。

在Rogowski线圈之后加一个积分器可以使感应电压与最初的时变电流同相甚至领先于时变电流。因此,可以将积分器输出电压过零点的时机设置的比时变电流过零点早一些,以此来适应可能出现的传播或控制延迟。积分器输出的放大信号随后将与给定的比较器阈值进行比较,由此产生的SR驱动信号将拥有近乎最佳的SR传导时间。将一个斜率检测逻辑电路插入控制电路中,可进一步优化不同负载条件下的SR传导时间。由于Rogowski线圈是通过磁通量感应电流的,因此没有电平的限制。并且Rogowski线圈使用的是空芯而不是磁芯材料,所以它的带宽非常高,且没有饱和极限;因此,与VDS感应SR控制方案不同,即使在兆赫兹(MHz)级别的谐振转换器上,Rogowski线圈SR控制方案也没有频率限制的问题。

图5对此处提出的方法进行了详细说明。将图5中的时变电流定义为i(t),并假设Rogowski线圈是垂直放置在变压器绕组上的,则可以使用公式1计算出Rogowski线圈绕组的输出电压,如下所示:

其中,A为Rogowski线圈上每匝的横截面积(假设Rogowski线圈上每匝的横截面积相同),N为Rogowski线圈上的匝数,l为Rogowski线圈环的周长, μ0 = 4π ∙ 10-7 H/m为磁导率常数。

图5:无源积分器使Rogowski线圈SR控制电路可以预测出电流过零点的时机。

假设在感测电路中使用的是理想运算放大器,公式2表示了Rogowski线圈输出v1_0与无源积分器输出v2_0之间的电压关系:

如下,解公式2中的微分方程:

其中a0为常数,且:

为了更容易理解如何使用无源积分器和放大器来调整相位差,我们假设时变电流为纯正弦波,这会使Rogowski线圈的输出电压和积分器的输出均为纯正弦波。换句话说,假设v2_0 (t ) = a1sin(ωt ),求解公式1和2可得i(t)的表达式,则公式2可被重写为公式3:

其中:

翻转Rogowski线圈的引脚排列,时变电流可被写为公式4:

通过改变R1,R2,C1fsw (ω=2πfsw)的值,并确保Rogowski线圈输出和积分器输入之间的正确连接极性,使公式3中Φ = −π/2成立,以及公式4中Φ = π/2成立,此时积分器输出v2_0 (t)可以与SR电流i(t)同相。此外,在实际应用中,您可以设置积分器的波形来使v2_0 (t)超前SR电流的相位。因此,即使当控制器和驱动器上分别有响应时间和传播延迟时,SR仍可确保在电流过零点时关断。

图6展示了感应电路的绕组电流测量值和增益放大器的输出电压。如您所见,若使电压过零点时的关断提前于实际感测电流,则可适应传播和控制上的延迟。

图6:通过使积分器输出端电流早于实际电流过零点,此SR电流测量对比展示了前瞻性的SR感应方案。

图7表示了当开关频率低于串联谐振频率时的完美SR关断时机。

图7:在300 kHz(a)和400 kHz(b)时,SR正好在电流过零点时关断。

在本系列的第三部分也是最后一部分中,我将讨论高频谐振转换器设计中的电压增益变化。

(参考原文:High-frequency resonant converter design considerations, Part 2

责编:Amy Guan

参考文献:

  1. J. Wang and B. Lu, “Open loop synchronous rectifier driver for LLC resonant converter,” in Proc. APEC, 2013, pp. 2048-2051.
  2. UCC24624 dual-channel synchronous rectifier controller for LLC resonant converters, Texas Instruments 
  3. M.H. Samimi, A. Mahari, M.A. Farahnakian and H. Mohseni, “The Rogowski Coil Principles and Applications: A Review,” IEEE Sensors Journal, vol. 15, pp. 651-658, 2015.
  4. B. Zhao, Q. Song, W. Liu and Y. Sun, “Overview of Dual-Active-Bridge Isolated Bidirectional DC-DC Converter for High-Frequency-Link Power-Conversion System,” IEEE Transactions on Power Electronics, vol. 29, pp. 4091-4106, 2014.
本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
阅读全文,请先
您可能感兴趣
自1984年,意法半导体首次进入中国,成为首批在中国开展业务的半导体公司。意法半导体CEO Jean-Marc Chery日前表示,中国市场是不可或缺的,是电动汽车规模最大、最具创新性的市场,与中国本地的制造工厂达成合作,具有至关重要的作用。他还表示,意法半导体正在采用在中国市场学到的最佳实践和技术,并将其应用于西方市场,“传教士的故事结束了”。
本文整理分析了30家本土上市半导体公司2024三季度财报数据,结合第三季部分企业的重点新闻,让读者了解目前本土电源管理芯片市场现状及企业布局。
宽禁带半导体材料的兴起成为了电力电子领域最为显著的变化之一。作为行业领导者,PI公司不仅敏锐地捕捉到了这一趋势,而且通过自主研发和技术创新,积极地适应了市场的变化。借该公司1700V氮化镓功率器件发布之机,笔者有幸对PI营销副总裁Doug Bailey进行了专访。
氮化镓在成本上具有显著优势,但目前的氮化镓开关器件大多局限于较低的耐压水平,无法满足更高电压应用的需求。在此背景下,开发出高压氮化镓开关IC,就具有革命性意义。
今天我又把同事的七彩虹战斧GeForce RTX 4060 8GB GDDR6显卡给拆了。发现它虽然用料不怎么样,但性能却非常地好。
传统上认为只有碳化硅能够切入的高压领域,氮化镓产品也已经出来了——看PI VP在2024年CEO峰会上如何解读!
目前,智能终端NFC功能的使用频率越来越高,面对新场景新需求,ITMA多家成员单位一起联合推动iTAP(智能无感接近式协议)标准化项目,预计25年上半年发布1.0标准,通过功能测试、兼容性测试,确保新技术产业应用。
中科院微电子所集成电路制造技术重点实验室刘明院士团队提出了一种基于记忆交叉阵列的符号知识表示解决方案,首次实验演示并验证了忆阻神经-模糊硬件系统在无监督、有监督和迁移学习任务中的应用……
C&K Switches EITS系列直角照明轻触开关提供表面贴装 PIP 端子和标准通孔配置,为电信、数据中心和专业音频/视频设备等广泛应用提供创新的多功能解决方案。
投身国产浪潮向上而行,英韧科技再获“中国芯”认可
点击蓝字 关注我们安森美(onsemi)在2024年先后推出两款超强功率半导体模块新贵,IGBT模块系列——SPM31 IPM,QDual 3。值得注意的是,背后都提到采用了最新的FS7技术,主要性能
今日,长飞先进武汉基地建设再次迎来新进展——项目首批设备搬入仪式于光谷科学岛成功举办,长飞先进总裁陈重国及公司主要领导、嘉宾共同出席见证。对于半导体行业而言,厂房建设一般主要分为四个阶段:设备选型、设
近期,多个储能电站项目上新。■ 乐山电力:募资2亿建200MWh储能电站12月17日晚,乐山电力(600644.SH)公告,以简易程序向特定对象发行A股股票申请已获上交所受理,募集资金总额为2亿元。发
来源:IT之家12 月 18 日消息,LG Display 韩国当地时间今日宣布,已将自行开发的“AI 生产系统”投入到 OLED 生产线的日常运行之中,该系统可提升 LG Display 的 OLE
有博主基于曝光的信息绘制了iPhone 17系列渲染图,对比iPhone 16系列,17系列最大变化是采用横置相机模组,背部DECO为条形跑道设计,神似谷歌Pixel 9系列,这是iPhone六年来的
万物互联的时代浪潮中,以OLED为代表的新型显示技术,已成为人机交互、智能联结的重要端口。维信诺作为中国OLED赛道的先行者和引领者,凭借自主创新,实现了我国OLED技术的自立自强,成为中国新型显示产
阿里资产显示,随着深圳柔宇显示技术有限公司(下称:“柔宇显示”)旗下资产一拍以流拍告终,二拍将于12月24日开拍,起拍价为9.8亿元。拍卖标的包括位于深圳市龙岗区的12套不动产和一批设备类资产,其中不
LG Display  12月18日表示,为加强OLED制造竞争力,自主开发并引进了“AI(人工智能)生产体系”。“AI生产体系”是AI实时收集并分析OLED工艺制造数据的系统。LG Display表
 “ AWS 的收入增长应该会继续加速。 ”作者 | RichardSaintvilus编译 | 华尔街大事件亚马逊公司( NASDAQ:AMZN ) 在当前水平上还有 38% 的上涨空间。这主要得益
点击蓝字 关注我们电网和可再生能源系统向着更智能、更高效的方向发展助力优化能源分配构建更加绿色和可靠的能源未来12 月 24 日 上午 9:30 - 11:302024 德州仪器新能源基础设施技术直播