如果只看消费市场,骨灰级玩家对GPU算力的追求是无止尽的。只怕算力不够,不怕价格、功耗有多夸张。为什么不将现在的GPU做得更大,在一颗die上堆更多的计算资源呢(也就是所谓的monolithic)?如果摩尔定律恒定持续,同面积内容纳更多晶体管,则这种方案是可持续的。但在摩尔定律放缓的情况下,要在一颗die上塞下更多的图形计算核心,尺寸和成本都是无法接受的……

消费用户市场,普通用户都能用上16核甚至64核处理器的PC。这可不是单纯堆核心就完事儿的。以当前CPU核心的规模,和可接受的成本,消费电子设备上一颗芯片就达到这种数量的核心数目,与chiplet的应用是分不开的。

Chiplet是这两年业界的香饽饽。前不久的ISSCC会议上,chiplet也是今年的热门议题。AMD从Zen架构开始,Ryzen系列处理器就全面应用了chiplet技术。Chiplet并不是什么新技术,更早提的MCM(multi-chip module)就是应用了chiplet的一种芯片方案。

简单来说,MCM通常是指将多个die(多个IC或chips)封装到一起的多芯片模组。构成MCM的一个个die,或者功能电路模块,即是chiplet。多个chiplet之间能够协作,构成更大的芯片,也就是MCM。有时,MCM/Multi-chip Package又被当作某一类封装方式)。

不过本文探讨的MCM/chiplet可能有一定程度的窄化,这里不探讨类似Intel Kaby Lake G那一类方案,即便它算是典型的chiplet应用(以及像很多近代Intel处理器那样只将处理器die和PCH die分开的那类chiplet,以及HBM存储chiplet)。可能单纯称其为MCM会更合理。

以AMD的Ryzen 3000系列处理器为例,每4个核心(外加cache)组成一个CCX,两个CCX就组成一个CCD——也就是一个die或chiplet。一颗处理器芯片上就会有多个这样的CCD。另外还有个I/O die作为通讯中心(cIOD),连接各个die,如上图所示。

值得一提的是,Ryzen 3000处理器的CCD部分制造采用7nm工艺,而cIOD则选择了12nm工艺,这就很能体现chiplet在制造上物尽其用、节约成本的优越性了。

如果说处理器的chiplet/MCM商用已经全面落地,那么die size更大的GPU能不能也采用MCM的方案?这是本文要探讨的话题,MCM应用于GPU还需要多久?借此也能窥见chiplet作为此类高算力芯片的技术方向时,半导体制造已经走到了哪里。

当GPU的die尺寸大到吓人的程度时

如果只看消费市场,骨灰级玩家对GPU算力的追求是无止尽的。只怕算力不够,不怕价格、功耗有多夸张。图形算力的饥渴从未停止过:1998年3dfx引入SLI技术,即2个或者更多的显卡一起上,实现更大规模的图形并行计算。

SLI同类技术(包括AMD的CrossFire)并未大规模普适,主要是因为这样的技术不仅有硬件级别的支持要求,而且对游戏开发者也有要求。在很多不支持多GPU并行计算的游戏中,此类方案甚至会令游戏体验变差。不过多GPU扩展的方案,在当代数据中心还是比较常见的。

基于这个思路,如果将多GPU的层级下沉到多die——也就是一个GPU之上,有多个chiplet,堆砌更多的图形计算单元,好像也是完全行得通的方案。只不过多GPU(或多芯显卡)需要跨系统或者跨板级,而多die则是基于同一个基板的封装级方案,延迟和带宽理论上也比跨PCB板更有优势才对。

那么为什么不直接将现在的GPU做得更大,在一颗die上堆更多的计算资源呢(也就是所谓的monolithic)?如果摩尔定律恒定持续,同面积内容纳更多晶体管,则这种方案是可持续的。但在摩尔定律放缓的情况下,要在一颗die上塞下更多的图形计算核心,尺寸和成本都是无法接受的。

目前的显卡主流产品,AMD Radeon RX 6900XT的单die尺寸达到了519mm²,英伟达Geforce RTX 3090则达到628mm²。这种die尺寸也算是不惜血本的代表了,逐渐逼近芯片制造设备可处理的最大尺寸(rectile limit, 858mm²)。未来再给GPU加计算核心,单die方案会有极大难度。这是GPU考虑MCM/chiplet方案的先决条件。

从成本来看,这个问题大概会更明朗。即便不考虑切割大面积晶圆可能造成良率低下的问题,更小die也能带来更高的成本效益。300mm的wafer满打满算造114片22x22mm(接近Vega 64尺寸)片单die;如果切分成更小的11x11mm,即原有每片die可获得4片更小的die,则很大程度减少了晶圆切割边缘浪费,就能造488片die——如果这些die在理想情况下每4片组成一颗MCM芯片,则产量就高了大约8%。

当然这其中并未考虑wafer不同形状的优化方案,也没有考虑制造缺陷之类的问题,而且MCM芯片还需要耗费更多的die来做专门的通讯(比如前文提到Ryzen处理器的I/O die)。但chiplet/MCM能够实现的成本节约仍然是显著的。

EETimes专栏作者DonScansen前不久撰文提到,“AMD计算出,以Chiplet方法制作EPYC处理器时,会需要比单一芯片多出10%的硅晶圆面积做为裸晶对裸晶(die-to-die)的通讯功能区块、冗余逻辑(redundant logic)以及其他附加功能,但最后整个chiplet形式处理器的芯片成本,比单芯片处理器节省了41%。”

总结一句话,chiplet/MCM本质上是在摩尔定律止步不前的当下,为进一步提高芯片算力,采用的一种控制成本的方案。这里的成本控制实际上还表现在IP的复用和弹性,chiplet有时可以“复制粘贴”的模块化方式,灵活地存在于芯片之上。AMD如今的Ryzen处理器能够如此便捷地堆核心,并且在多线程性能表现出对Intel的碾压优势,和chiplet是分不开的。

GPU应用chiplet的阻碍

不过GPU要应用chiplet却并不是一件简单的事,就好像显卡SLI(或双芯显卡)经过了这么多年,都并未普及开一样。Raja Koduri此前还在AMD的时候提过,GPU可能会采用Infinity Fabric方案(AMD Ryzen处理器的一种互联方案);这在当时被认为是MCM型GPU提出的依据。不过众所周知Raja Koduri后来就离开了AMD,此间规划的延续性是未知的。

 

2019年英伟达宣布实验室打造一款名为RC18的AI处理器。这颗处理器采用16nm工艺,更重要的是选择了多die解决方案。芯片整体包含36个小型模块,每个模块主要由16个PE(Processing Elements)构成,外加RISC-V核及对应的缓存,另外还有英伟达的GRS(Ground-Referenced Signaling)互联。当时英伟达提到,RC18的存在表明很多技术的可行性,包括可扩展的深度学习架构,以及高效的die-to-die方案。

这颗芯片对于未来的chiplet型GPU而言可能是个重要模板。不过对于图形计算的GPU而言,在同一颗芯片上渲染画面帧,要分配到不同chiplet之上,难度还是会比这类AI芯片更大的。2018年AMD RTG团队高级副总裁David Wang在接受PCGamesN采访时,曾经提到过MCM GPU要实现起来并不简单。“我们在看MCM型的实现方法,但目前尚无法定论,传统游戏图形计算会应用类似技术。”

“从某种角度来看,其实这也就是在单一封装上去做CrossFire(AMD版的SLI方案)。其挑战在于,我们需要能够做到在硬件层面对开发者不可见,否则其发展就不会顺利。”而且,“GPU在NUMA(非一致性内存访问)架构以及一些特性方面有着一定的限制……”,尤其相比CPU,图形计算负载的这种设定会更有难度。

这话的意思是指,第一,如果MCM GPU需要游戏开发者去花额外的时间做开发上的调整,或者增加开发难度,则成为推广MCM GPU的阻碍。第二,不同die之间互联效率、数据一致性问题:包括在chiplet之间切分图形计算管线,以及彼此之间存储访问的差异性,都会给设计带来更高的复杂度。

SLI——即以前的多GPU(或板级多芯片GPU)方案实际上是这两个问题的放大版本。面向开发者时开发难度大;不同GPU之间的工作部署有难度。(而且多GPU方案非常依赖于多层级的系统互联,这个过程中的数据迁移、同步带来的功耗问题也比较大;所以最终互联,达成的有效带宽和每比特消耗的能量都不尽人意)

其中后一个问题也是chiplet技术演进探讨的热门议题,即便已经商用的chiplet CPU产品,依旧在互联方面有着持续改进的空间。

Chiplet即将应用于GPU的几个先兆

MCM GPU真正在这两年呼声特别高也不是没有原因的。其中有几件标志性事件可能表明MCM GPU离我们并不遥远了——即便最早一批MCM GPU可能会是面向数据中心的,并在后续才逐渐下放到游戏和图形计算市场。

首先是Intel这边,RajaKoduri(没错,就是之前AMD的那位)今年一月份在Twitter上发布了一条推文,展示Intel即将推向市场的XeHPC,如上图所示——有关XeGPU,此前介绍十一代酷睿的核显文章曾大致谈到过。Xe面向HPC高性能计算时,作为独立GPU形态存在。

这枚代号为Ponte Vecchio的芯片看起来还是蔚为壮观的。就这张图片来看,这颗GPU计算核心可能主要由上下两个chiplet构成,围绕四周的应该是HBM存储,还有I/O或者其他属于Xe特性的组成部分。Chiplet之间可能采用Intel的EMIB(Embedded Multi-die Interconnect Bridge)连接。此前Intel也提过Ponte Vecchio之上应用了Foveros 3D堆叠技术,具体情况未知。不过chiplet在GPU上的应用,或者说真正的MCM GPU,在此也是初见端倪的。

除此之外,2019年底Twitter传出一则泄露消息,称英伟达新一代Hopper架构(Ampere后续架构)GPU将以MCM的形态问世。

 

来源:MCM-GPU: Multi-Chip-Module GPUs for Continued Performance Scalability, Nvidia

事实上,英伟达在2017年的ISCA上就发表过一篇题为MCM-GPU: Multi-Chip-Module GPUs for Continued Performance Scalability的paper。虽然这篇paper中提到的方法,只是在英伟达实验室里以模拟的方式将MCM GPU,与单die GPU和多GPU方案进行比较,不过表明英伟达的确是有在探讨其可行性的。

这篇paper有具体探讨不同层级的多芯片方案,比如SLI那样的多显卡方案,以及板级多芯方案、同封装下的多die方案、单die方案等,互联带宽和开销问题;并且认定当代技术储备,比如说substrate尺寸、die之间信号通讯技术(如英伟达的GRS)都正走向成熟,给MCM GPU的实现开创了技术条件。

 

此外这篇paper提到了几个优化方案,包括引入L1.5 cache,不同chiplet之间线程调度和数据划分方案。从这套方案的结果来看(如上图),虽然某些测试项有不尽人意之处,但整体上MCM GPU能够实现在性能上比多GPU方案的显著领先(且功耗遥遥领先,0.5 pJ/bit vs 10 pJ/bit),而且性能较同计算硬件资源的单die方案,并没有太大损失(而且需要注意,这种单die方案现实中是造不出来的)。而相比目前能够制造的最大单die方案(128 SM单元),英伟达预设中的这套方案有45.5%的性能优势。

文中提及将这样的方案应用在HPC大规模集群中,能够极大提升性能密度,系统层级减少机柜数量,以及对应的系统级网络、通讯规模变小。最终实现通讯、供电、制冷系统的耗电量极大节约。只不过这篇paper,整体上更多仍停留于纸面和模拟。

 

最后AMD作为已经在CPU之上推开chiplet的市场玩家,今年年初浮现一则其2019年申请的专利,名为”GPU Chiplets using High Bandwidth Crosslinks”。这项专利的很大一部分,旨在解决MCM GPU在开发层面困难的问题。

这项专利提到系统中包含一个CPU。它在通讯上与GPU chiplet阵列的第一颗chiplet连接。CPU和这颗GPU chiplet通过一条总线连接;而这颗GPU chiplet和后面的chiplet则通过一种passive crosslink连接。这里的passive crosslink实际上是个被动interposer die,专门用于chiplet之间的通讯,以及负责将SoC功能切分成更小的chiplet。(如上图所示)

 

针对存储一致性问题,每颗GPU chiplet都会有其各自的LLC(last-level cache),也就是L3 cache。LLC跨所有的chiplet实现一致性,也是实现跨chiplet存储一致性乃至提升MCM GPU效率的关键。

这套系统中,仅第一颗GPU chiplet接收来自CPU的请求,这样一来对CPU而言,GPU就好像是传统的单die方案一样,对图形计算开发也就比较友好了。未知AMD是否已将这项专利付诸实现,GPU本身内部的通讯延迟理论上可能会更高。

不过如前所述,MCM GPU最早应用的理论上可能还是数据中心、HPC这些领域。毕竟如英伟达在paper中所述,这样的设计对于数据中心具备了更天然的替代优势。而在技术逐步准备就绪之际,MCM GPU的出现的确只是时间问题,包括下放到游戏市场。Intel、AMD和英伟达,哪家将率先踏出这一步,也是值得拭目以待的。

责编:Luffy Liu

本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
阅读全文,请先
您可能感兴趣
今年初的GTC上,黄仁勋就说机器人的“ChatGPT时刻”要来了。也就是说这波AI驱动的机器人热潮要来了...最近的ROSCon China 2024大会似乎也能看到这种迹象...
Intel刚刚发布了新一代桌面显卡Arc B580和B570,关键是还支持AI帧生成和低延迟...
Arm预计,到2025年将会有1,000亿台基于Arm架构的设备可具备人工智能功能,包括由Cortex-A、Cortex-M驱动的设备。
人工智能(AI)功能已经在各种移动设备中变得至关重要。尤其是2024年,AI PC陆续推向市场,甚至可以称为“边缘设备AI元年”。 这次我们就来盘点一下2024年下半年发布的主要AI PC和处理器。
借着传说中Intel在中国举办的有史以来规模最大的生态大会,谈谈AI PC生态于2024收官之际大致发展到了哪儿...
台积电的1.6纳米芯片“A16”技术具有多项创新点,其中最显著的是其超级电源轨(SPR)背面供电网络。这一技术是台积电首创,专为高性能计算产品设计,旨在提高芯片的性能和降低功耗。
目前,智能终端NFC功能的使用频率越来越高,面对新场景新需求,ITMA多家成员单位一起联合推动iTAP(智能无感接近式协议)标准化项目,预计25年上半年发布1.0标准,通过功能测试、兼容性测试,确保新技术产业应用。
中科院微电子所集成电路制造技术重点实验室刘明院士团队提出了一种基于记忆交叉阵列的符号知识表示解决方案,首次实验演示并验证了忆阻神经-模糊硬件系统在无监督、有监督和迁移学习任务中的应用……
C&K Switches EITS系列直角照明轻触开关提供表面贴装 PIP 端子和标准通孔配置,为电信、数据中心和专业音频/视频设备等广泛应用提供创新的多功能解决方案。
投身国产浪潮向上而行,英韧科技再获“中国芯”认可
今日,长飞先进武汉基地建设再次迎来新进展——项目首批设备搬入仪式于光谷科学岛成功举办,长飞先进总裁陈重国及公司主要领导、嘉宾共同出席见证。对于半导体行业而言,厂房建设一般主要分为四个阶段:设备选型、设
来源:苏州工业园区12月17日,江苏路芯半导体技术有限公司掩膜版生产项目迎来重要进展——首批工艺设备机台成功搬入。路芯半导体自2023年成立以来,专注于半导体掩膜版的研发与生产,掌握130nm至28n
来源:观察者网12月18日消息,自12月2日美国发布新一轮对华芯片出口禁令以来,不断有知情人士向外媒透露拜登政府在卸任前将采取的下一步动作。美国《纽约时报》12月16日报道称,根据知情人士以及该报查阅
有博主基于曝光的信息绘制了iPhone 17系列渲染图,对比iPhone 16系列,17系列最大变化是采用横置相机模组,背部DECO为条形跑道设计,神似谷歌Pixel 9系列,这是iPhone六年来的
万物互联的时代浪潮中,以OLED为代表的新型显示技术,已成为人机交互、智能联结的重要端口。维信诺作为中国OLED赛道的先行者和引领者,凭借自主创新,实现了我国OLED技术的自立自强,成为中国新型显示产
“ 洞悉AI,未来触手可及。”整理 | 美股研究社在这个快速变化的时代,人工智能技术正以前所未有的速度发展,带来了广泛的机会。《AI日报》致力于挖掘和分析最新的AI概念股公司和市场趋势,为您提供深度的
阿里资产显示,随着深圳柔宇显示技术有限公司(下称:“柔宇显示”)旗下资产一拍以流拍告终,二拍将于12月24日开拍,起拍价为9.8亿元。拍卖标的包括位于深圳市龙岗区的12套不动产和一批设备类资产,其中不
 “ AWS 的收入增长应该会继续加速。 ”作者 | RichardSaintvilus编译 | 华尔街大事件亚马逊公司( NASDAQ:AMZN ) 在当前水平上还有 38% 的上涨空间。这主要得益
极越汽车闪崩,留下一地鸡毛,苦的是供应商和车主。很多人都在关心,下一个倒下的新能源汽车品牌,会是谁?我们都没有未卜先知的超能力,但可以借助数据管中窥豹。近日,有媒体统计了15家造车新势力的销量、盈亏情
上个月,亿万富翁埃隆·马斯克谈到了年轻一代的生育问题。他强调生育的紧迫性,认为无论面临何种困难,生育后代都是必要的,否则人类可能会在无声中走向消亡。他认为人们对于生育的担忧有些过头,担心经济压力等问题