“5nm翻车”也算是近期的一个热门话题了,似乎去年下半年发布的,包括骁龙888、麒麟9000、苹果A14等在内的一众应用了5nm工艺的手机芯片,都在功耗和发热表现上不够理想。事实上,即便都叫5nm,台积电和三星的5nm工艺也差异甚远——所以“集体翻车”这种说法首先就值得商榷。这两者甚至不该直接比较……

“5nm翻车”也算是近期的一个热门话题了,似乎去年下半年发布的,包括骁龙888、麒麟9000、苹果A14等在内的一众应用了5nm工艺的手机芯片,都在功耗和发热表现上不够理想。

骁龙888(小米11)跑个Geekbench 5,单CPU功耗就达到了7.8W,堪称骁龙近代能耗比最差,Adreno GPU性能首次逊于隔壁Mali;而麒麟9000(华为Mate40 Pro)虽说GPU性能上去了,但在光明山脉测试中,跑出了11W的峰值功耗;这都是向着PC功耗看齐的节奏了。很多媒体也因此将5nm冠以“集体翻车”的名号。

高通骁龙888、三星Exynos 2100选择三星5nm,而海思麒麟9000、苹果A14选择了台积电5nm。事实上,即便都叫5nm,台积电和三星的5nm工艺也差异甚远——所以“集体翻车”这种说法首先就值得商榷。这两者甚至不该直接比较。本文我们根据Wikichip、Semiwiki、Semiconductor Digest等机构所做的研究,尝试谈谈两家5nm工艺的一些基本差异。

虽说从微观层面,比如材料、晶体管性能等无法直接比较;而且台积电甚至没有公开5nm工艺晶体管的关键尺寸(暂时也没有5nm工艺的相关“拆解”)。本文仅尝试给出两者大方向上的差异。

虽说主流芯片功耗爆表是否真的与台积电、三星的5nm工艺有关,个人持保留意见。但通过这篇文章,我们也能更好地理解,如今的尖端工艺发展成了什么样。

到底晶体管的哪个部分是5nm?

在探讨两种5nm工艺差异前,首先仍需明确一个概念。即现在的“几nm”工艺这样的称谓,顶多就是个营销概念。不管是7nm还是5nm,晶体管或者芯片微观层面,都不存在哪个几何参数是7nm或5nm。如此一来,5nm也就名副其实地成为了一个虚指,它仅能用于表达一个工艺节点,“5”不存在实际意义。

早在1997年以前,几点几微米或几百纳米工艺,的确是指晶体管上gate(栅或闸)的长度(Lg)。比如0.35μm,350nm,确实就是指gate长度为350nm。在350nm制造工艺以前的时代,工艺数字步进以0.7倍为节奏,比如350nm x0.7,下一代工艺就该是250nm了。

FinFET结构晶体管

不过到了奔腾3时期的250nm工艺,实则已经不再真正指代晶体管gate长度。250nm节点的gate长度已经来到了190nm,但晶体管的其他部分却无法以对等的比例来同步缩减。从这一时期开始,工艺节点的这一数字便不再具有太大的实际意义。2012年22nm节点问世时,随之而来的FinFET晶体管结构。这种3D结构要用一个数字来衡量晶体管尺寸也更难了。

在20nm以后,越来越多的节点数字也抛弃了0.7倍步进的传统。14nm、7nm、5nm虽然仍遵循0.7倍步进传统,但12nm、8nm、6nm、4nm等则显然更具营销意味了。自不必说,这些数字本身,除了表达工艺迭代之外,便再无更多意义。

若一定要说在晶体管上,与如今这个节点数字还有所关联的部分,那大概就是fin宽度了,上面这张图是Intel的14nm与10nm两代工艺,晶体管各关键参数的变化,其中fin宽度大致与节点数字是一个量级。

台积电5nm与三星5nm的本质差异

我在去年《同样是台积电7nm,苹果和华为的7nm其实不一样》一文中曾大致总结过,台积电与三星7nm可认为是同代工艺,从Wikichip预估的数字来看,这两者的晶体管密度(高密度库)应该也差不了多少。

但这两家fab的工艺路线方向却已经发生了较大差异。在7nm时代,三星foundry以更激进的姿态,率先在多个叠层采用了EUV(极紫外)。台积电的7nm路线图中,至少N7与N7P工艺仍然没有采用EUV,直到N7+才用上了4层EUV层。

台积电N7+工艺的情况比较特别。市面上选择了N7+的芯片似乎很少——知名的大概也就是Kirin 990 5G版了(Kirin 990 4G版用的是N7工艺)。而且N7+与N7/N7P并不兼容。

台积电N7后续的完整迭代自然就是N5了——节点数字也符合0.7倍步进的节奏。所以对台积电而言,5nm的确就是7nm的迭代工艺。

但三星这边可不一样。三星近些年的路线演进,开始走完整迭代时的大步子。比如在三星眼中,10nm到7nm属于节点的完整迭代,所以7LPP就相对激进地用上了EUV。在7LPP往后,三星foundry路线图的完整迭代,下一代工艺应该是3nm(3GAA)。且7nm->3nm的工艺迭代,迈的大步在于晶体管结构从FinFET,演进至GAAFET(Gate-All-Around FET)或/和MBCFET,也就是传说中的纳米线和纳米片。

而5nm在三星眼中实则属于1/4代工艺,或者说5LPE属于7LPP工艺的同代加强,是向3nm工艺的过渡。三星的7nm与5nm的关系,更类似于其10nm与8nm的关系,如上图所示。三星7LPP工艺同代加强,还包括了6nm、5nm、4nm。

如此一来,台积电和三星(以及Intel)未来的工艺迭代可能要进一步发生分歧。比如台积电预期中的3nm,至少前期并不打算采用GAA结构。当然,3nm就属于题外话了,而且虽然三星的3GAA工艺PDK前年就进入了Alpha阶段,但其量产至少也要等到明年。

这种迭代节奏上的差异(以及双方7nm的起点差不多),导致了台积电在5nm节点上跨的步子,会明显比三星更大,或者说更先进。至于后续3nm如何,尚不得而知。所以N5与5LPE理论上是两家公司的两个不同产品,而不应将其理解为某个固定标准下,双方各自交出的答卷。

两种5nm工艺的晶体管密度

鉴于篇幅关系,本文就不再科普FinFET晶体管结构,以及Fin Pitch、Gate Pitch、CPP、不同金属层的基本概念了。对这些内容感兴趣的同学,可阅读《为什么说Intel的10nm工艺比别家7nm更先进?(上)》,里面有比较详细的科普。

下面这两张图表给出的数据分别来自Scotten Jones(IC Knowledge,via Semiwiki)和David Schor(WikiChip Fuse)。下图综合了三星、台积电已公开的信息,以及针对现有公开信息的一些分析。

来源:Scotten Jones, IC Knowledge via SemiWiki[1],发布于2019.5

来源:David Schor, WikiChip Fuse[2],发布于2020.3

这其中值得一提的主要是晶体管密度(Transistor Density),此处IC Knowledge预计台积电N5工艺的密度为173.1 MTr/mm²(百万晶体管每平方毫米,特指逻辑电路HD高密度单元库),WikiChip Fuse此前预估数字则为171.3 MTr/mm²[2]。

IC Knowledge预计三星5LPE工艺的晶体管密度(UHD超高密度单元)126.5 MTr/mm²,WikiChip则预估为126.89 MTr/mm²[3]。

台积电N5逻辑电路1.84倍晶体管密度提升,与同功耗水平下15%速度提升

虽然有区别,但量级上差不多,台积电N5还是比三星5LPE要高出不少的(Scotten Jones在2019年年末又更新过一次晶体管密度预估,似乎又大了不少[4])。无论如何,这一点也能看出台积电和三星的5nm虽然都叫5nm,但跨步幅度还是很不一样。

另外在CPP(contacted poly pitch,栅间距)、M2P(Metal 2 Pitch,金属间距)这样的晶体管关键数值上,大神们预估的值也有一些差异,IC Knowledge标台积电N5工艺的CPP是50nm,WikiChip则估算为48nm;而M2P,IC Knowledge后来又将其更新到了28nm。这两张表格仅供参考——注意其发布时间也有差异。

事实上,三星5LPE与上一代7LPP相比,就单个晶体管的关键参数来看,各部分是几乎没有变化的,晶体管密度提升依靠的主要是单元库变化,以及各种scaling booster方法(比如SDB)。

台积电N5可不是这样。此处未详细列出N5相比N7的晶体管各部分关键参数变化。从WikiChip提供的数据来看,CPP间距N7为57nm,N5则为48nm;MMP则从40nm缩减到了30nm[5]。这也进一步佐证了三星5LPE属于7LPP的同代加强或过渡,而台积电N5是N7的完整迭代

骁龙888“翻车”都是5nm的锅吗?

很多人说高通被三星坑了,这话大抵上是站不住脚的,或者其功耗表现不佳并不只是三星的锅。芯片设计12-18个月周期,在前期定义配置时,选择的制造工艺就已经定下来了,如今设计与制造的紧密程度是相当之甚的——且当代工艺差异,也不大可能在芯片设计阶段中途突然就转到另一种工艺上。

高通骁龙888选择三星5LPE工艺,必然是有自己的考量的。高通也绝对不可能不知道,前文提到5LPE与N5工艺这些最基本的差异。至于高通的考量究竟是制造成本本身,还是设计IP的迁移便利性,就不得而知了。或许将来TechInsights的深度拆解能探索一二。

此前的文章里提到过,这些晶体管密度数字只具有参考价值。一方面在于不同时代计算晶体管密度的方法是有差别的,这在《为什么说Intel的10nm工艺比别家7nm更先进?(上)》一文中就已经详细提过了。而且一颗芯片上,晶体管并不是只有逻辑电路,更非仅采用HD高密度单元,晶体管也不是均匀分布。具体的仍要看芯片本身的设计。

在IEDM上,台积电提到对于包含60%逻辑单元、30% SRAM,以及10%模拟I/O的移动SoC而言,其5nm工艺能够缩减芯片35%-40%的尺寸——这样的值是更具参考价值的。

至于工艺迭代或增强,对性能、功耗产生的具体影响,厂商公布的数字恐怕是很难验证的。后文会提到三星5LPE通过引入6T UHD单元、减fin以减少单元高度的方式来实现晶体管密度33%的增加。它对性能带来的影响也很难考证,或者我们这些业外人士也无法搞清楚,这种方案究竟是好还是不好。

去年在上海举办的Exynos芯片发布会上,三星有提到5LPE令芯片面积降低35%,功耗效率提升20%,性能表现提升10%。台积电则针对N5的功耗和性能数字提过,同功耗下速度提升15%,同性能下功耗降低30%。这些数字的意义可能都并不大,尤其在面对各种不同的IC设计时。

举个例子,骁龙888的CPU部分,大核心Cortex-X1。Cortex-X1是Arm的Greek家族CPU架构,它与当时一同公布的Cortex-A78在设计理念上就有较大差异。通常移动CPU更看重低功耗,并且要在功耗、性能与面积(PPA)之间达成平衡,功耗与能耗比更是每年Arm升级IP的重点。

但Cortex-X1是打破了这种传统的。其设计指针更偏向性能,且在功耗、面积方面有一定妥协。X1架构有了明显拓宽,在A78设计基础上,再加包括前端5-wide解码宽度,renaming带宽最高每周期8 Mop,NEON加倍,L2、L3 cache加倍等。Mop cache条目加倍,甚至比Intel Sunny Cove(十代酷睿)还要大。

比较具有代表性的是Re-order Buffer(ROB)增加到224条目,此前是160,以提升指令乱序与并行度。以前Arm在这方面是一直偏保守的。Arm以前曾提过,ROB拓宽带来的性能提升,与芯片面积增加,两者关系不呈线性,而且还需要以功耗为代价。Cortex-X1显然已经看破这些了。更多有关Cortex-X1的架构拓宽,不是本文要探讨的重点。

虽然论架构宽度,Cortex-X1的基础设计还是没法和苹果Firestorm(M1与A14)比,但Cortex-X1面向芯片制造商开始采用一种”Cortex-X Custom Program”授权计划。这种授权方式下,客户可以对微架构做进一步定制,比如说要求更大的ROB、改进的prefetcher等。我们不知骁龙888针对Cortex-X1的具体实施,不过它以性能为更高优先级的设计,致骁龙888产生不对等的功耗,设计与IP也是重要因素。

Arm在此前发布Cortex-X1时大力宣传了其IPC及性能提升,但对功耗和面积效益语焉不详。AnandTech猜测,X1面积和功耗都可能是A78的1.5倍;在预设功耗(power)下,X1核心的能效(energy efficiency,每焦耳的性能)会比A78糟糕23%[6]。

当然我们不能就此认定,骁龙888峰值性能下的功耗与能效比都是Cortex-X1的问题,而且Cortex-X1设计原则本身就是如此。骁龙888涉及到的问题可能覆盖了Arm、高通、EDA工具厂商,以及三星foundry。何况骁龙888 GPU部分的Adreno 660针对上代改进(提频)也比较仓促。单纯说骁龙888的功耗问题需要三星5LPE工艺背锅,显然是不靠谱的。

至于很多人说5nm“集体翻车”,前文谈到了台积电N5工艺与三星5LPE差异较大,演进方向也不同。而将5nm一概而论,以骁龙888和麒麟9000为例来说“这一代工艺都不行”更是无稽之谈。在麒麟9000的GPU IP上,Arm为Mali G78设计,堆至多24个核心原本就相当令人困惑。

即便要说台积电N5工艺“翻车”,或者三星5LPE“翻车”,这两辆车“翻”的姿势和方向应该也有很大差异。

再提一提后续改进版工艺,三星方面自然就是4LPE了,而台积电则为N5P。4LPE的晶体管和大部分基本思路都与5LPE一致,不过金属互联间距有进一步的缩减;而台积电的N5P与N5有着相同的设计规则,完全的IP兼容性,同功耗下7%性能提升,同性能够下15%功耗降低。

三星5LPE与台积电N5详解(选读)

以下部分作为本文选读内容,仅针对感兴趣的读者。这部分内容只反映了台积电和三星公开的有关N5和5LPE的事实,无法作为直接比较的依据(因为三星和台积电公开的信息内容其实并不对称);另外也包含来自WikiChip Fuse、Semiconductor Digest的点评和设想;另外个人进行了少量信息补充,贻笑大方之处欢迎指正。其中的大部分内容是早就公开的信息。

(1)三星5LPE

有关三星5LPE工艺, Exynos 1080剖析文章中已经有比较详细的介绍,这里做一些简单概括。

如前文所述,在晶体管尺寸方面,5LPE相比7LPP几乎没有变化,包括fin pitch、gate pitch、各层金属间距等。对于芯片设计方而言,7LPP到5LPE的设计IP可极大程度复用[8]。5LPE的几个改进重点包括:

引入一种新型的6T UHD(超高密度)单元库。6T UHD单元相比三星7nm HD单元缩减了一个fin。如此一来,整个单元高度就变小了,可实现面积缩减、密度提升。当然,为了防止性能下降,需要考虑做材料或结构加强,包括low-k spacer、DC等方面。具体细节不了解。

来源:Arm TechCon 2019[7]

6T UHD单元包括采用SDB(single diffusion break)、36nm的M2金属间距,CB on RX edge(RX是指单元的活跃区域,CB属于额外的本地互联层,在单元内横向布局,将接触层的触点连接到多晶硅本地互联——位于第一层金属层之下,也就是MOL互联;所以CB on RX edge也就是CB互联层用到单元活跃区域边缘)。

UHD单元可实现33%的密度提升,不过这种单元库并不会应用于高性能需求的关键路径部分,毕竟高性能总是以牺牲密度为代价的。更稀疏的7.5T HD单元仍然是必要选择(似乎比7nm HD单元还要高),三星的数字是其性能提升11%。7.5T UHD单元之间并未采用SDB,而是MDB(pMOS为SDB,nMOS为DDB)。

另外5LPE工艺还引入一种低漏电的1-fin device(1个p fin,1个n fin),可提供至多20%的功耗节约。实际上,从这些改进也不难发现,5LPE的确主要是基于7LPP工艺的加强——虽然有关6T UHD单元的晶体管加强细节信息并不多。

(2)台积电N5

最后主要来说说台积电N5工艺。事实上,台积电公开N5工艺的细节也不多,前文提到有关N5晶体管的数字,都是大佬们自己依据经验给出的。台积电在IEDM2019放出了比较多有关N5工艺的消息。

首先是EUV的采用,前文的表格中也提到了N5有14层EUV层——这比N7+就多了不少(先前的数据是N7+的EUV层为4层,N6可能是5层)。此前7nm介绍文章中提到过,像偏底部、间距比较小的金属层,在常规DUV下就需要依靠SAQP或者LE3外加多个刻版掩模才能搞定。应用EUV之后,所需掩模层就少了很多。台积电在paper中提到N5的EUV层,替换了此前至少4倍的浸入层(immersion layer)——对比的可能是N7+。

可以从上图看到,EUV掩模图案也更清晰,或者说有更高的保真度;减少掩模数量、提升保真度,本身也对生产时间成本、良率有帮助。当然三星5LPE所用的EUV层从前文的图表看来,也并不少。

台积电N5相比N7,总体上就减少了掩模——而且似乎是工艺迭代历史上,首次减少了掩模数量(WikiChip给出的数据是,14/16nm大约60层掩模,10nm则为78层,7nm为87层,5nm回到了81层;如果没有应用EUV的话,WikiChip预计N5需要115片掩模[2])。

N5迭代的第二个重点是晶体管的HMC(High Mobility Channel,高迁移沟道)。这项改进主要是为了提升驱动电流。上图有展示HMC与硅,两种沟道材料方案的驱动电流与漏电流关系比较,HMC有18%的性能优势。

其中右图展示的是,从fin顶端到底部,随沟道深度变化而产生的沟道应力变化。台积电没有给出HMC的更多信息。WikiChip认为,HMC的本质是针对pMOS采用SiGe(锗化硅)[2],Semiconductor Digest也在分析文章中做了类似的猜测[9]。

Intel 10nm工艺介绍中的SDB,单元之间共享一个dummy gate,以节约空间

Intel 10nm工艺介绍中的COAG,MOL与gate的接触点位置发生变化,以节约空间

在工艺迭代中,有一个词叫scaling booster。这个词描述的是在常规晶体管尺寸缩减技术之外的加强方案。比如说SDB、COAG——这些在Intel 10nm介绍文章的上篇中都有谈到过,Intel在宣传中称其为hyperscaling。前文三星5LPE的某些尺寸缩减方案也能见到scaling booster,比如SDB。

台积电N5工艺的scaling booster方案主要包括了“unique diffusion termination”,国外这些分析机构普遍认为,这项技术的本质应该就是SDB[2][9],即单元之间共享一个dummy gate(如上图);另外,N5也采用了COAG方案,即将gate contact直接放在晶体管active区域上方(如上图)——Intel 10nm工艺也采用了这项技术。这两种技术更多的介绍,都可参见Intel 10nm技术文章

此外,N5的每个晶体管类型都有至多7种Vt(阈值电压)选择,以此来满足不同的能效需求。其中有个新的eLVT(extreme LVT,LVT是指Low Voltage Threshold)晶体管,相比7nm能够实现15-25%的速度提升。

台积电还谈到一种3 fin的单元——面向HPC应用(此前规划中N5就有面向移动客户和HPC客户两种),有额外10%的性能优势,密度也会相对低一些。

BEOL金属互层的改进在于,间距最小的RC(接触电阻)与via电阻(通路电阻)相比N7工艺的增加并不大。台积电实现这一点靠的是EUV,以及“innovative scaled barrier/liner, ESL/ELK dielectrics, and Cu reflow”。

Barrier和liner(阻隔层与衬垫)以及电介质(etch-stop layer, extreme low-k)在此前的文章里已经有过介绍,不过此处在表达上比较模糊,这里的铜reflow不清楚具体是什么工艺。不过电阻的控制,在互联延迟方面是有很大价值的。

SRAM部分,在N5工艺下,HC(高性能)单元面积0.025 μm²,HD(高密度)单元面积0.021 μm²。WikiChip提到即便是其中的“高性能”单元,其密度也高于市面上已知的SRAM单元[2]。另外还有ULHD(超低漏电)单元有更高的能效,HSHD高速单元则在面积方面有优势,可替代HC单元[10]。

下面这张图是ULHD、HD、HSHD单元的电流与漏电流关系;以及HD SRAM的Vin与Vout对应曲线。

上面这张图则展示了N5工艺下的HD单元阵列作为L1 cache时(基于135Mb测试芯片),0.85V能够达到4.1GHz的频率。

N5的其他改进还包括了面向高速IO,PAM-4 SerDes在112Gb/s速率下功耗0.78pJ/bit,130Gb/S功耗0.96pJ/bit。金属互联上层MiM(Metal-insulator-Metal)相比一般HD-MiM高出4倍的电容密度,提升4.2% Fmax等。[11]

更多有关台积电N5与三星5LPE工艺的内容,可参见参考来源中给出的这些链接以及IEDM的paper,以上只简略地谈到了其中一部分。从这些资料也能大致上看出,如果将5nm作为一个统一的节点,则台积电N5显然有着更积极的部署,而三星5LPE则是个过渡工艺;后续4LPE与N5P的竞争也不会改变这一局面。但3nm的竞争可能又会大不一样了。

参考来源:

[1]TSMC and Samsung 5nm Comparison - SemiWiki.com

https://semiwiki.com/semiconductor-manufacturers/samsung-foundry/8157-tsmc-and-samsung-5nm-comparison/

[2]TSMC Details 5 nm - WikiChip Fuse

https://fuse.wikichip.org/news/3398/tsmc-details-5-nm/

[3]Samsung 5 nm and 4 nm Update - WikiChip Fuse

https://fuse.wikichip.org/news/2823/samsung-5-nm-and-4-nm-update/

[4]IEDM 2019 – TSMC 5nm Process - SemiWiki.com

https://semiwiki.com/semiconductor-manufacturers/intel/280519-iedm-2019-tsmc-5nm-process/

[5]TSMC 5-Nanometer Update - WikiChip Fuse

https://fuse.wikichip.org/news/2879/tsmc-5-nanometer-update/

[6]Arm's New Cortex-A78 and Cortex-X1 Microarchitectures: An Efficiency and Performance Divergence - AnandTech

https://www.anandtech.com/show/15813/arm-cortex-a78-cortex-x1-cpu-ip-diverging

[7]High-Performance 5LPE Implementation Next-Generation Arm “Hercules” CPU. Kevin K. Yee (Samsung), Fakhruddin Ali Bohra (Arm), Edson Gomersall (Cadence). Arm TechCon 2019

[8]5nm Lithography Process - WikiChip

https://en.wikichip.org/wiki/5_nm_lithography_process

[9]Update: TSMC’s 5nm CMOS Technology Platform - Semiconductor Digest

https://www.semiconductor-digest.com/2020/02/05/tsmc-to-discuss-their-5-nm-cmos-technology-platform-at-iedm-2019/

[10]TSMC’s 5nm 0.021um2 SRAM Cell Using EUV and High Mobility Channel with Write Assist at ISSCC2020 - SemiWiki.com

https://semiwiki.com/semiconductor-manufacturers/tsmc/283487-tsmcs-5nm-0-021um2-sram-cell-using-euv-and-high-mobility-channel-with-write-assist-at-isscc2020/

[11]TSMC Unveils Details of 5nm CMOS Production Technology Platform Featuring EUV and High Mobility Channel FinFETs at IEDM2019 - SemiWiki.com

https://semiwiki.com/semiconductor-manufacturers/tsmc/282339-tsmc-unveils-details-of-5nm-cmos-production-technology-platform-featuring-euv-and-high-mobility-channel-finfets-at-iedm2019/

责编:Luffy Liu

 

本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 学习,收获颇多。
  • 讲的挺好的
  • 专业
  • 专业
  • 够专业
  • 写得很清楚
阅读全文,请先
您可能感兴趣
通过机器学习技术,EDA工具可以获取更精确的模型来预测设计中存在的问题,如布线拥塞、信号干扰、热效应等,从而为用户提供更准确快速的指导,避免后期返工。
该小组汇集了国内外领先的芯片及IP、嵌入式开发工具、操作系统等厂商,形成强有力的组织,使命是通过一站式功能安全认证服务,帮助企业提升认证价值,满足IEC 61508、ISO 26262等国际功能安全认证标准,从而更高效地达成功能安全要求。
在ICCAD 2024主峰会上,中国半导体行业协会集成电路设计分会理事长魏少军教授带来“中国芯片设计业要自强不息”主题报告演讲,深入解读了过去一年中国IC设计业的发展机遇与挑战,权威分析中国IC设计业各环节的主要数据及其背后的意义。
美国商务部工业与安全局(BIS)宣布了对华半导体出口管制措施的新规,140家中国公司被新增到“实体清单”中,这些公司涉及半导体生产设备制造商、晶圆厂和投资机构。
美国商会透露,拜登政府计划在感恩节前公布新的对华出口管制措施,可能将约200家中国芯片公司纳入贸易限制名单。此举旨在限制这些公司获取美国产品,进一步打击中国半导体产业的发展。中国外交部对此表示坚决反对,并称将采取坚决措施维护中国企业的合法权益。
莱迪思(Lattice)正在考虑对英特尔旗下的FPGA业务Altera发起收购要约,对于国产FPGA行业而言,这一消息无疑带来了新的挑战和机遇。尽管在技术实力、产品性能及市场份额等方面与国际巨头尚有一定差距,但近年来国产FPGA的发展势头不容小觑……
目前,智能终端NFC功能的使用频率越来越高,面对新场景新需求,ITMA多家成员单位一起联合推动iTAP(智能无感接近式协议)标准化项目,预计25年上半年发布1.0标准,通过功能测试、兼容性测试,确保新技术产业应用。
中科院微电子所集成电路制造技术重点实验室刘明院士团队提出了一种基于记忆交叉阵列的符号知识表示解决方案,首次实验演示并验证了忆阻神经-模糊硬件系统在无监督、有监督和迁移学习任务中的应用……
C&K Switches EITS系列直角照明轻触开关提供表面贴装 PIP 端子和标准通孔配置,为电信、数据中心和专业音频/视频设备等广泛应用提供创新的多功能解决方案。
投身国产浪潮向上而行,英韧科技再获“中国芯”认可
来源:苏州工业园区12月17日,江苏路芯半导体技术有限公司掩膜版生产项目迎来重要进展——首批工艺设备机台成功搬入。路芯半导体自2023年成立以来,专注于半导体掩膜版的研发与生产,掌握130nm至28n
近期,多个储能电站项目上新。■ 乐山电力:募资2亿建200MWh储能电站12月17日晚,乐山电力(600644.SH)公告,以简易程序向特定对象发行A股股票申请已获上交所受理,募集资金总额为2亿元。发
12月18日,珠海京东方晶芯科技举行设备搬入仪式。插播:加入LED显示行业群,请加VX:hangjia188在10月31日,珠海京东方晶芯科技有限公司发布了Mini/Micro LED COB显示产品
对于华为来说,今年的重磅机型都已经发完了,而明年的机型已经在研发中,Pura 80就是期待很高的一款。有博主爆料称,华为Pura 80将会用上了豪威OV50K传感器,同时电池容量达到5600毫安时。至
有博主基于曝光的信息绘制了iPhone 17系列渲染图,对比iPhone 16系列,17系列最大变化是采用横置相机模组,背部DECO为条形跑道设计,神似谷歌Pixel 9系列,这是iPhone六年来的
12月18 日,据报道,JNTC与印度Welspun BAPL就车载盖板玻璃的开发及量产签订了投资引进业务合作备忘录(MOU)。资料显示,JNTC是韩国的一家盖板玻璃厂商。Welspun的总部位于印度
近期,高科视像、新视通、江苏善行智能科技等企业持续扩充COB产能。插播:加入LED显示行业群,请加VX:hangjia188■ 高科视像:MLED新型显示面板生产项目(二期)招标12月18日,山西高科
又一地,新型储能机会来了?■ 印度:2032储能增长12倍,超60GW据印度国家银行SBI报告,印度准备大幅提升能源存储容量,预计到2032财年将增长12 倍,超60GW左右。这也将超过可再生能源本身
在科技浪潮翻涌的硅谷,马克·扎克伯格不仅是“脸书”帝国的掌舵人,更是以其谦逊低调的形象,在公众心中树立了独特的领袖风范。然而,在镁光灯难以触及的私人领域,扎克伯格与39岁华裔妻子普莉希拉·陈的爱情故事
亲爱的企业用户和开发者朋友们距离2024 RT-Thread开发者大会正式开幕仅剩最后3天!还没报名的小伙伴,抓紧报名噢,12月21日不见不散!大会时间与地点时间:2024年12月21日 9:30-1