尽管日前思科以26亿美元收购硅光子公司Acacia一案再生变数,且双方争执的理由居然是“是否在合并协议规定的期限内获得中国国家市场监督管理总局(SAMR)的批准”,但不可否认的是,随着摩尔定律脚步的放缓,将光子和集成电路中的电子结合在一起,甚至是用光子替代电子形成“片上光互联”,以实现对现有光模块产业链的重塑,正成为半导体行业数个“颠覆式创新”中的重要方向之一。

尽管日前思科以26亿美元收购硅光子公司Acacia一案再生变数,且双方争执的理由居然是“是否在合并协议规定的期限内获得中国国家市场监督管理总局(SAMR)的批准”,但不可否认的是,随着摩尔定律脚步的放缓,将光子和集成电路中的电子结合在一起,甚至是用光子替代电子形成“片上光互联”,以实现对现有光模块产业链的重塑,正成为半导体行业数个“颠覆式创新”中的重要方向之一。

硅光子为什么引人关注?

要回答这个问题,就要先从光子集成电路技术(PIC,Photonic Integrated Circuit)谈起。与我们熟知的基于硅材料的集成电路技术类似,PIC技术的核心,也是希望通过将很多的光学元器件集成在一个PIC单片之中,使得系统尺寸、功耗和可靠性得到大幅度提高,并同时降低系统成本。

但目前PIC所采用的基底材料主要是磷化铟(InP)、砷化镓(GaAs)、铌酸锂(LiNbO3)等,昂贵的价格严重制约了它们的商业化进程。考虑到光信号在被氧化硅包裹的硅中传播时几乎不会发生衰减,而且硅材料本身价格低廉且在半导体工艺中已实现成熟应用,于是半导体巨头纷纷把目光转向硅光子,探讨光子和电子结合的可能性,硅光子(Silicon Photonics)技术应运而生。

所谓的硅光子技术,就是在硅基上同时制造出电子器件和光子器件,将电子器件(Si-Ge量子器件、HBT、CMOS、射频器件、隧道二极管等)、光子器件(激光器、探测器、光开关、光调制器等)、光波导回路集成在同一硅片或SoC上。其优势主要体现在相干调制以及合分波器件的高度集成化,加上完善的温控设计,可以大幅解决相干产品的缺陷和成本,进而下沉到核心与汇聚层。

这样,当面对400G+网络速率传输时,光学连接便可以开始进入新的阶段,可插拔光学收发器将有望被取代。在新技术中,光子链路连接到同一封装中的高性能IC,同时借助外部激光器提供光源。该封装通过光纤连接到另一个采用光子链路的模块,从而形成封装到封装高速互连,同时大幅降低功耗。

但很显然,将电子接口、数字电路和高速模拟混合信号电路与光学元件组合在同一硅片上,并不是一件容易的事情。用格芯(GLOBALFOUNDRIES)硅光产品线副总裁Anthony Yu的话来说,就是“将其全部集成到硅中,然后便可充分利用硅制造技术的规模、成本和工艺控制优势,这样的道理谁都明白,但在同一芯片上集成光子和RF CMOS电路是需要讲求精妙平衡的。”

光进,铜退

根据Yole的预测,硅光光模块市场将从2018年的约4.55亿美元(相当于130万个)增长到2024年的约40亿美元(相当于2350万个),复合年增长率达44.5%。而LightCouting的数据显示,2022年,硅光子技术将在每秒峰值速度、能耗、成本方面全面超越传统光模块预测。而到2024年,硅光光模块市场市值将达65亿美金,占比高达60%,而在2020年,这一数字仅为3.3%。

2017-2023年全球光模块市场规模及结构预测(资料来源:Lightcounting)

尽管目前垄断高速数据传输市场的核心器件仍然是传统光模块。但得益于硅光子具有的高速数据传输、高带宽以及低功耗等前景优势,当今的高性能计算、电信、军事、国防、航空航天、医疗和研究应用对其青睐有加,2021年有望成为硅光模块加速出货的第一年,市场正式启动。

2020-2025年硅光核心应用市场(图片来源:格芯)

  • 高性能计算

由于受到RC(电阻电容)延迟经典物理效应的限制,高性能计算行业正在迅速接近电气I/O性能的实际极限。随着计算带宽需求不断增长,电气I/O的规模无法保持同步增长,从而形成了“I/O功耗墙”,限制了计算运行的可用能源。因此,硅光技术在片上互连、片间互连应用中Pb/s量级的传输速率,被业界视作是“推动计算机光互连甚至是光计算的革命”。

打一个更形象的比喻,由于硅光的传输距离和数据传输速率是铜缆的6500倍和8倍以上,因此在400Gbps的传输速率下,硅光可支持长达32,808英尺(约10公里)的传输距离,超过了珠穆朗玛峰的高度。

“现在是从电气I/O迁移到光互连I/O的重要拐点”,英特尔首席工程师、英特尔研究院PHY研究实验室主任James Jaussi表示,之所以现在需要迁移到光互连I/O,主要有两个原因,一个是业界正在快速接近电气性能的物理极限,一个是I/O功耗墙,会导致无法计算。

  • 5G核心骨干网

5G时代,网络端口接口速率全面提升,例如接入层接口速率已经从6G/10G提升至25G;汇聚层接口速率从25G/50G提升至50G/100G;核心层接口速率从100G/200G提升至200G/400G,逐步引入硅光子技术,对确保实现高速度大容量的数据传输至关重要。

  • 超大型数据中心

根据Equnix预测,2017年-2021年全球互联网带宽容量以48%的年复合增长率增长,2020年将正式进入400G时代,并有望于2022年进入800G时代。格芯方面提供的数据显示,到2024年,由于CAGR高达44.5%,硅光收发器(包括基于III-V化合物半导体和硅光的模组)将占40亿美元市场的大部分,硅光子技术对于提高网络设备的密度和能效具有至关重要的作用。

另一方面,高昂的成本也迫使产业界通过技术升级降低光模块的单价。以一个拥有超过10万台服务器和5万多个交换机的数据中心为例,它们之间的连接需要超100万个光模块,花费在1.5亿美元至2.5亿美元之间,占据数据中心网络成本的60%,超过交换机、NIC和电缆等设备的总和。而硅光模块虽然当前工艺难度大,封装成本较高(约在1.5-2美元/GB),但其成本理论上有望降至0.3美元/GB,在规模量产情况下更具成本优势。

硅光市场的玩家们

硅光光模块与传统光模块产业链的主要区别在于光芯片部分,是高度集成的单芯片,而不是传统的分离多器件的组合,其余产业链环节是相同的。其中,Intel走的是一体化IDM模式;代工厂如格芯、TSMC(台积电)、Silex、APM和VTT,都在积极研发硅光子规模制造工艺;Luxtera、Sicoya、Rockley、Inphi、Acacia在硅基光电集成收发芯片的设计方面走的较为靠前。

近十年硅光产业主要收购情况(数据来源:赛迪智库集成电路研究所,2020年3月)

Anthony Yu最近分享了一些关于格芯硅光业务的最新情况。他表示,格芯一直都在用其90nm平台来满足数据中心市场的需求,但未来的目标将是以TB/s级速率实现芯片到芯片互连,而“0.5Tbps/光纤这一行业最高单位光纤数据传输速率”和300mm晶圆量产优势,将是帮助格芯在硅光子市场“摧城拔寨”的两把利器。

作为业内为数不多的可提供硅光解决方案的晶圆厂,格芯开始涉足硅光业务的时间最早要追溯到2015年对IBM微电子业务的收购。之后,从2018年宣布基于90nm RF SOI工艺构建硅光平台90WG,到即将于2021年下半年完成生产工艺认证的45SPCLO单芯片技术,并通过与Ayar Labs和MACOM等公司富有成效的合作,格芯已悄然成为硅光领域一股不可忽视的力量。

除了高速数据传输外,硅光子技术在AI计算领域的应用同样引人注目。在2020年举行的Hot Chips 32大会上,初创公司Lightmatter就展示了用于通用人工智能加速的光子计算测试芯片。该芯片面积为150平方毫米,包含超过十亿个FinFET晶体管、数万个光子算数单元和数百个记录设置数据转换器。其中,数字电路部分采用格芯12nm Leading-Performance FinFET工艺制造,运用Arm 3D网状互连技术,核心间数据通路更为直接,可降低延迟;光子芯片使用格芯90nm标准硅光子工艺实现,可以实现8TOPS的峰值算力,整体芯片组的功耗为3W,能效比相比传统基于CMOS工艺的数字芯片来说毫不逊色,展示了光计算未来的巨大潜力。

Lightmatter用于通用人工智能加速的光子计算测试芯片

再来看一下另一重量级玩家英特尔的最新进展。从2016年英特尔将其硅光子产品“100G PSM4”投入商用起,截止目前,英特尔已经为客户提供了超过400万个100G的硅光子产品。而在2020年的英特尔研究院开放日活动上,英特尔又提出了“集成光电”愿景,即将光互连I/O直接集成到服务器和封装中,对数据中心进行革新,实现1000倍提升,同时降低成本。

James Jaussi介绍了英特尔近期在集成光电五大“关键技术模块”方面取得的重大创新,包括:

  • 微型环调制器(micro-ring modulators):传统的芯片调制器占用面积太大,与IC封装在一起时成本很高。英特尔开发的微型环调制器将调制器尺寸缩小了1000倍以上,从而消除了将硅光子集成到计算封装中的主要障碍。
  • 全硅光电检测器(all silicon photo detector):数十年来,业界一直认为硅材料没有光检测功能,但英特尔展示的研究结果证明事实并非如此。这一突破的一大好处就是让成本更低。
  • 集成半导体光学放大器:该设备通过使用与集成激光器相同的材料实现,有助于降低总功耗。
  • 集成多波长激光器(Integrated multi-wavelength lasers):使用一种称为波分复用(wavelength division multiplexing)的技术,将来自同一激光的不同波长用在同一光束中传输更多数据。这样就能使用单根光缆来传输额外数据,从而增加了带宽密度。
  • 集成:使用先进的封装技术将硅光子与CMOS芯片紧密集成,可实现三大优势:(1)更低的功耗、(2)更高的带宽和(3)更少的引脚数(pin count)。

我国目前在硅光领域开展布局的企业主要有华为、光迅科技、亨通光电、博创科技等。根据赛迪研究院集成电路研究所光电研究室研究员马晓凯在《硅光,半导体的另一条赛道》一文中的介绍,2013年,华为收购比利时硅光子公司Caliopa,并且在英国建立了光芯片工厂发展硅光技术;2017年,亨通光电与英国的硅光子企业洛克利合作,获得多项硅光芯片技术许可,2020年3月10日发布了400G硅光模块;2018年光迅科技联合国家信息光电子创新中心等单位联合研制成功100G硅光收发芯片并正式投产使用,但是流片需要依靠国外;2020年博创科技与Sicoya公司合作,推出了高性价比的400G数据通信硅光模块解决方案。

但他也在文中同时指出,我国硅光发展与发达国家仍存在差距。例如,在设计方面,架构不够完善,体积和性能平衡的问题没有妥善解决;在制备方面,我国的硅光芯片大部分都需要国外代工,对外依赖度大;在封装方面,硅光器件之间的耦合以及大密度集成仍然存在问题;在测试方面,高速仪器仪表还严重依赖国外,等等。为此,他提出三点建议:积极与下游厂商对接、增强企业垂直整合能力、做好长期投入的准备,助力我国硅光产业发展。

责编:Luffy Liu

本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
阅读全文,请先
您可能感兴趣
由于决定推迟采用OLED屏幕,苹果很可能会升级其MacBook Air系列的屏幕,即氧化物TFT-LCD。
虽然LG Display正在宣传其对利润更高的OLED面板的关注,同时采取削减成本的措施,将有助于精简运营并减少损失,但其仍有一段路要走才能摆脱财务困境。
苹果的这项专利展示了其在屏下技术上的重大突破,尤其是在iPhone和MacBook设备上。对于iPhone而言,这项技术有望彻底消除刘海设计,使得设备拥有更加简洁和一体化的外观。
新款廉价版iPhone将搭载最新的A系列芯片(可能是iPhone 16同款的A18),标配8GB运行内存,内置苹果自研的5G基带芯片……
未来,随着AI技术的加入,智能眼镜将进入产品技术和体验的升级周期,也将使可穿戴技术领域即将迎来一场革命。
伴随堆叠数量的递增,各层所产生的光线相互叠加,致使整体发光量显著增长,进而促成亮度的提升。LG Display有意率先将四堆叠W-OLED技术应用于电视面板领域。
大多数研发人员和导热界面材料配方设计师可能会推荐使用具备诸多优异特性的硅。然而,也存在一些例外情况。这些问题强调了在选择导热界面材料时考虑终端产品最终应用的重要性.....
在与芯科科技(Silicon Labs)首席技术官Daniel Cooley的交谈中,我们了解到该公司在物联网(IoT)和智能边缘领域所发挥的作用和未来发展。
虽然绕过产品防伪保护的手段变得越来越高级,但是最新的 NFC 芯片技术提高了信息安全性,让品牌能够保护知识产权,预防客户误买假冒商品。
西门子推出Simcenter更新版本,助力客户简化工作流程,加快航空航天认证,同时提供深入洞见
近日,荣耀公司高层人事变动频繁,继原CEO赵明因身体原因离职后,荣耀中国区CMO姜海荣、中国区销售部部长郑树宝等多位高管也相继离职。           1月20日,据荣耀内部公告,荣耀中国区CMO姜
亚化咨询重磅推出《中国半导体材料、晶圆厂、封测项目及设备中标、进口数据全家桶》。本数据库月度更新,以EXCEL表格的形式每月发送到客户指定邮箱。中国大陆半导体大硅片项目表(月度更新)中国大陆再生晶圆项
点击蓝字 关注我们SUBSCRIBE to USWestinghouse Electric Company西屋电气公司和Radiant公司正在开发一些世界上最小的反应堆。对两座新微型反应堆的资助可能会
现货促销让采购/更简单/更高效为了更好地帮助大家采购芯片,实现供需资源的无缝对接。AMEYA360决定开启【现货促销】专栏,通过AMEYA360微信公众号,每天推送原厂现货促销物料,助力广大用户制定更
● 第六届半导体湿电化学品与电子气体论坛将于3月19日在杭州召开1月20日消息,据外媒报道,英特尔已成为“某家公司”的收购目标,而特斯拉CEO马斯克被认为是该传闻中英特尔的潜在收购者!据悉,这一收购传
1月20日消息,据外媒报道,英特尔已成为“某家公司”的收购目标,而特斯拉CEO马斯克被认为是该传闻中英特尔的潜在收购者!据悉,这一收购传闻最早由SemiAccurate报道,该网站称约两个月前读到一封
    三极管的电流放大作用应该算是模拟电路里面的一个难点内容,我想用这几个动画简单的解释下为什么小电流Ib能控制大电流Ic的大小,以及放大电路的原理。    我这里的三极管也叫双极型晶体管,模电的放
● 第六届半导体湿电化学品与电子气体论坛将于3月19日在杭州召开1月20日消息,近日国家人工智能产业投资基金合伙企业(有限合伙)成立,出资额600.6亿元。合伙人包括:国智投(上海)私募基金管理有限公
1月20日,市场调查机构 CounterPoint Research发布的报告显示,2024 全年 PC 出货量达到 2.53 亿台,同比增长 2.6%,PC 市场已恢复到正常季节性波动,并随着 AI
近日,纳芯微宣布推出全新基于AMR(各向异性磁阻技术)的轮速传感器NSM41xx系列。该系列产品通过集成先进的磁性传感敏感单元与ASIC技术,能够精准监测车轮转速,为防抱死制动系统(ABS)、车身电子