英伟达DPU这种类型的硬件,几乎可以代表数据中心的某一个发展方向。这个议题甚至恰好能够解答,英伟达为何要收购Arm,以及AMD为何要收购赛灵思。在近期英伟达GTC China首日主题演讲之后的圆桌论坛上,英伟达全球业务运营执行副总裁Jay Puri谈到了有关英伟达收购Arm的问题……

在Aspencore全球分析师共同发布的《2021年全球半导体行业10大技术趋势》一文中,有一项提到了,HPC数据中心专用加速的趋势递进。其中特别提到英伟达的DPU,这种类型的硬件,几乎可以代表数据中心的某一个发展方向。

这个议题甚至恰好能够解答,英伟达为何要收购Arm,以及AMD为何要收购赛灵思。在近期英伟达GTC China首日主题演讲之后的圆桌论坛上,英伟达全球业务运营执行副总裁Jay Puri谈到了有关英伟达收购Arm的问题。

“Arm已经取得了巨大成功,但他们获得的成功大部分集中在移动端,更多的机会在等待他们探索。Arm应当发挥显著作用的地方,还包括数据中心与PC。但这个市场的涉足其实并不简单,数据中心、云和PC领域是另一回事。”Jay Puri提到,“从技术上来看,Arm在这一领域是完全没问题的。很多探索中的例子都表明,技术不是问题。”

“在市场方面,数据中心未来的重要工作是围绕人工智能、加速计算的。英伟达在这个平台很成熟,我们有可用的完整堆栈,有所有必要的合作伙伴,生态系统庞大,有超过200万开发者;很多初创企业、行业研究都在进行中。”“一旦Arm成为英伟达的一部分,我们将能够促进Arm在数据中心取得成功。”

“这样一来,市场就会有x86之外可行的替代方案,不仅限于移动领域,数据中心、PC等领域都如此。竞争能够促进进步、推动创新。”这番话实则已经非常明晰地交代了,Arm对于英伟达的主要价值在哪里:数据中心(和可能的PC)。本文尝试扩展HPC数据中心的专用加速趋势这一话题,亦可从中看看英伟达的野心有多大。

Arm对数据中心的作用有多大

2020年,HPC领域在相关芯片架构层面发生过一件大事:富士通(Fujitsu)发布名为富岳(Fugaku)的超算,其中的芯片为A64FX。这颗芯片在微架构层面其实是很有意思的。首先它整体上采用monolithic的设计,而不是现在流行的chiplet(比如AMD Epyc)。它既像CPU,又有点儿像GPU,而且片上还集成了HBM2存储——这样一来,A64FX的板卡就比较奇特:板卡上没有RAM,因为已经集成在了片上(chip level)。

我们来简单看看这颗芯片微架构的独特之处。从上面这张图来看,核心周围的4个die就是HBM2存储,连接到四个HBM2 Interface之上,算是与核心靠得很近了,所以主内存到L2 cache的带宽就会比一般的HPC系统要明显更大(1024GB/s),单芯片的容量也达到了32GiB。

核心部分,A64FX整体上是基于Arm v8.2A架构的,扩展了SVE(Scalable Vector Extensions)——这种扩展是专门针对HPC科学负载矢量化准备的,属于NEON扩展指令集的补充。A64FX具体采用的是512bit SVE。这一点其实并没有什么。

这颗芯片真正有意思的地方是,它并没有什么加速器,die上也没有集成专门的GPU之类的处理器。其行为方式很像GPU,但却是颗实实在在的通用CPU。A64FX内部总共分成4组,分别是4个CMG(core memory group),每组13个核心(所以总共是52个核心,其中48个是活跃核心,其余4个为OS以及冗余策略预留)。CMG内部每个核心依次连接,而不同CMG之间采用类似于Intel Skylake的那种Ring Bus环形总线连接。作为一颗通用处理器,A64FX就是可以跑常规操作系统的,虽然它内部看起来还挺像英伟达的GPU。

这颗芯片在设计上就是为HPC负载准备的,尤其是科学模拟、数据分析等。现在比较主流的方案,是用GPU来加速这些活儿,主要是因为GPU能够灌入大量数据,并做高度并行计算,然后同时输出大量结果。事实上,HPC的存储带宽需求一直很大,包括气象模拟、各种流体力学、量子力学等研究,以及计算机视觉、机器学习一类数据分析工作,都要求大量数据的迁移,在大量核心之间通讯、共享。

A64FX从设计思路上,也能干这样的工作:持续做SIMD计算,而且还有不小的片上存储资源和相当大的传输带宽。另外富士通开发了一种名为“Tofu”的互联方案,据说在能效、带宽和延迟方面表现都非常好,宣传上提到是显著优于AMD和Intel的方案的(据说是比Xeon/Epic,有10倍的能效优势)。此外,SVE矢量扩展,及其对FP16、FP32等数据类型计算的原生支持,都令其相当适用于HPC负载。

从已公开的数据来看,A64FX单芯片在性能上也远优于Intel Xeon Platnium 8168、NEC SX-Aurora这类方案,以及部分测试优于Nvidia上代的Tesla V100。其实相较传统通用CPU的性能优势还是意料之中的。因为A64FX从设计上来看,是明显更偏向专门针对HPC做了"domain-specific"的优化的,与此同时还保有了CPU的通用性。

用简单的话来概括A64FX的思路,它很像把HPC方案中CPU+GPU+RAM的传统组合凝聚到一起,另外也有比较全面的大规模扩展方案。这颗芯片预计2021年会出货给亚马逊、谷歌、微软这些云供应商。

当然不能就性能、效率,以及其设计就简单认定,A64FX就一定能够在HPC领域掀起多大的浪,生态构建也属于重要的工作。但很显然,Arm在HPC、数据中心之上发光发热,至少就技术、性能层面来看,是没有任何问题的;而且Arm具备了相当的弹性,是x86平台可能无法给予的;另一方面,Arm在端侧正在对x86发起新一轮猛攻,这可能也将有助于Arm在数据中心的生态构建。

GPU在数据中心的发展令人咂舌

富岳以及A64FX的发展思路未必就代表了数据中心的未来,电子科技及半导体领域从来不是效率、性能说了算的,而且我个人也觉得A64FX在微架构层面虽然有创新,但它作为一种通用芯片,在专用计算的"domain-specific"这一点上仍然可轻易被超过;比如几个月前,Graphcore二代IPU的发布会就特别提到了,算力相较A64FX的超越。

老祖宗构建起来的架构,其实很难在短期内被轻松推翻。只不过传统CPU+GPU+RAM的发展方向,本身就在不停发生变化。就好像多年前应该不会有太多人想到,GPU、FPGA加速卡这类硬件可以在数据中心活得这么滋润。

英伟达最伟大的发明,大概就是CUDA和GPGPU了。这将GPU扩展到了更多市场。2016年黄仁勋在GeForce 1080 Ti发布会上提到最多的词还是rendering和graphics;但在2020年GeForce 30系列GPU的发布会上,Graphics这个词被提及的次数却远远少于RT core、AI等。这表明英伟达的GPU市场,早就扩展到了游戏、图形计算之外。

即便AMD刚刚发布的Radeon GPU在性能上将近做到与Ampere架构GeForce的齐头并进,AMD Radeon的市场与英伟达依然是不可同日而语的。

我在去年GTC China的报道中提到,2015-2019年英伟达的营收增长速度之快,令这家公司不像是个已经步入成熟期的企业。这主要是源于GPU在数据中心业务上的风光正盛。而且这个趋势在2020年竟然还在持续,甚至可以用“飙车”来形容。

英伟达数据中心业务云霄飞车般的营收增长

英伟达最新一季(FY2021Q3)的财报显示,公司季度营收47.3亿美元,上涨57%。值得注意的是,其中数据中心业务的营收同比增长达到了162%——而且这还是在持续多年增长之后的持续增长。在谷歌云、微软Azure之后,AWS、Oracle Cloud、阿里云都相继宣布了Nvidia A100可用;选择英伟达平台针对AI相关服务做AI inference越来越多;当然英伟达数据中心业务的强势,也离不开Mellanox在InfiniBand等方面的增长。

相较之下,英伟达游戏业务37%的增速虽然也很亮眼,却在增长性上相形见绌了。专业视觉以及汽车业务的营收下滑,也就显得没那么重要了。去年的分析文章中,我曾大致估算数据中心业务占到英伟达整体营收的1/4,仅次于营收占比过半的游戏业务。今年的情况预计又会发生较大变化。以这种成长速度,数据中心很快就会成为可与其游戏业务相提并论、并驾齐驱的业务了。

这其实很大程度上代表了数据中心市场,GPU这类型的硬件已经占据了多重要的地位。可见市场对于性能和效率的渴求还是疯狂的,何况数据中心市场客观上还受到了新冠疫情的推动。

那么这和Arm又有什么关系呢?

DPU是英伟达野心的承载

英伟达也在GTC China期间宣布,多家中国顶级云服务提供商及系统制造商采用其A100 Tensor Core GPU。阿里云、百度智能云、滴滴云、腾讯云等云服务提供商都推出了搭载A100的云服务及GPU实例。A100是英伟达这一代Ampere架构,定位在数据中心平台的GPU产品,被英伟达称作“最强性能的端到端AI以及HPC数据中心平台”。

Ampere架构是英伟达在2020年年中正式官宣的。消费端的GeForce 30系列,以及上述A100都可以说是Ampere架构产品。实际上英伟达如今在热推的另一类产品,文首提到的DPU也有Ampere架构GPU的身影:BlueField-2X DPU板卡上就加入了一枚Ampere架构的GPU,用于AI加速。

这里的DPU是相当值得一谈的。抛开Ampere架构不谈,在前两个月的GTC大会上,英伟达正式宣布了BlueField-2/2X DPU(data processing units)的推出。DPU这个概念最早应该是Mellanox提出的。英伟达在新闻稿中提到,DPU采用data-center-infrastructure-on-a-chip架构,“突破性的网络、存储和安全性能”。直译过来,就是芯片上的数据中心基础设施。

本月GTC China期间,好几篇来自英伟达的新闻稿都提到了DPU或相关信息:包括公有云厂商Ucloud基于英伟达的BlueField DPU研发,“并于上半年推出的裸金属物理云1.0产品,通过DPU集成的多核Arm CPU快速将物理云基础架构软件从x86迁移到DPU中”。而且“Ucloud进一步于下半年研发并推出裸金属物理云2.0产品”,其中也包含了BlueField DPU本身的更多特性。

在Mellanox被英伟达收购之前,DPU实际上是Mellanox针对下一代SmartNIC的一个设想,将其networking的技术,和Arm做结合,分担主系统的更多工作,包括软件定义网络、软件定义存储、专用加速引擎等。2019年BlueField产品很低调地发布了。英伟达后续对BlueField-2,也就是DPU二代产品的定位有了进一步的延展。

所以今年发布的其实是二代DPU。BlueField 2芯片本身包含8个Arm Cortex-A72核心,以及两个VLIW加速引擎;然后再加上Mellanox最拿手的针对网络连接的ConnectX-6 DX NIC(网络适配器)。

简单来说,DPU是数据中心的另一个domain-specific加速器,从主CPU分担networking、存储和安全负载。这其实是英伟达在GPU产品于数据中心市场大获成功后的又一步扩张举措。与此同时进一步消除x86 CPU在数据中心的重要性。

用Mellanox的话来说,DPU是将计算功能,与数据靠得更近了(data-centric architecture),取代以前还要把数据专门移到计算所在位置的那种模式(compute-centric architecture)。

更具体地说,BlueField-2相对而言是达成了这个目标的;而BlueField-2X则是在板卡上给DPU再加上了Ampere架构的GPU(和EGX A100好像有点类似)——英伟达称其为AI-powered DPU。此处多加的GPU价值主要是实时的安全分析,包括识别异常流量,加密流量分析,识别恶意行为,以及动态安全组合、自动响应等。

至此,其实英伟达已经有能力将整个系统,包括CPU、NIC、加速器、安全都放到一个SoC上,再搭配自家GPU,基本上是可以无视x86的存在的。从英伟达公布的DPU产品路线图来看,后续还会有BlueField-3和4的问世。

BlueField-3其实是加强版的BlueField-2。而BlueField-4则计划在单芯片性能上就打败现有DPU+GPU的组合。英伟达计划BlueField-4应可提供400 TOPS的AI算力。如此一来,从GPU在数据中心做AI、数据分析及HPC,到如今DPU接管网络、存储、安全等关键任务,以及将来DPU可能把这些加速的活儿都干了。

DSP应用于网络安全的一个例子:当两名开发者使用Omnivers高吞吐流app进行实时的工作时,一台设备是Vmware Cloud Foundation + BlueField-2 DPU,另一台则是传统架构,在遭遇DdoS攻击时,两种架构的CPU占用率对比。右边这台服务器会因为数据包泛红,致工作被打断;而左侧服务器,DPU自己就能够识别并丢弃这些恶意数据包

与此同时,英伟达也推出了配套的DOCA软件栈,就类似于GPU世界的CUDA那样。英伟达这两年一直在宣称自己是家软件公司。那么当为开发者提供SDK,这片市场的空前增长,就像现如今的GPU那样,是为英伟达真正统领数据中心市场的野心所在。

而且英伟达现有的软件开发能力,还能持续为DOCA添砖加瓦,包括SDK扩展支持、各种库的增加:眼见CUDA如此的兴盛即知DPU将来的潜力了。与此相较,媒体渲染的什么黄氏定律(Huang’s Law)都不过是为此服务的营销宣传罢了。

Arm将在此间扮演什么样的角色?回想文首Jay Puri在GTC China首日的圆桌论坛上的发言,是否变得明朗许多?在DPU的版图上,Mellanox早已是英伟达麾下一员,就剩Arm了。想到此处,感觉英特尔在现如今的时代格局下,还真是有点儿“谁都在针对我”的处境。

这或许也能一定程度解释,为何AMD要收购赛灵思。另外,Jay Puri发言中还提到了,Arm理应在PC领域也发光发热,这是否是在暗示,英伟达或许还有在消费市场一搏的打算?

责编:Luffy Liu

本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
阅读全文,请先
您可能感兴趣
基于Lunar Lake的ThinkPad X1 Carbon笔记本重量就只有984g,如果拿这台笔记本和几年前重达2kg的游戏本比玩游戏谁更强,会怎样?
欧洲在1nm和光芯片技术上的试验线启动,将有助于缩小研究与制造之间的差距,并推动整个半导体生态系统的发展。
过去四年里,美国电子制造业的投资额已经超过此前三十年的总和,整体规划投资约达4500亿美元,堪称美国史上规模最大的半导体制造扩张。
面对未来道路的挑战,新一代汽车的OEM正在积极探索创新之路,努力实现既符合日益严格的法规要求的乘客安全功能,又配备出色音频性能的沉浸式车内娱乐系统,以满足市场和消费者的需求。在这一过程中,OEM可以充分借助TI全新推出芯片产品,重塑车内体验,开启汽车驾乘的新纪元。
尽管市场上有传言称英伟达大幅削减了对台积电CoWoS-S封装的需求,甚至有报告指出砍单幅度高达80%,但台积电和英伟达均对此进行了否认......
很多人以为,今年CES上老黄演讲的主角是GeForce显卡,但其实是他手里握有的机器人相关的“时间宝石”...
对于未来行业发展的增长趋势、行业特征和渠道特点等方面,IDC 总结并给出了2025年中国PC 显示器市场十大洞察……
该存内计算芯片采用全数字设计,能够保证不同位宽配置下的精确计算。为实现不同位宽配置下的高利用率和高能效,团队提出了一种……
西门子数字化工业软件在IDC MarketScape发布的《2024 – 2025全球制造执行系统供应商报告》中被评为MES领导厂商,该报告针对制造业的MES软件厂商进行了综合性评估。
Arm宣布其芯粒系统架构 (CSA) 正式推出首个公开规范,进一步推动芯粒技术的标准化,并减少行业的碎片化。
2022年下半年以来,需求下降,芯片价格跳水,芯片行情趋向寒冷,拼价格、拼服务、拼账期成为常态,持续的低迷之下,芯片人都开始靠省钱过日子。同时,我们发现,行情冷淡的时候,订货、配单、PPV(Purch
等效电阻ESR是晶体在等效电路中的总电阻。谐振电阻RR是晶振本身的电阻值。大小取决于晶体的内部摩擦、电极、支架等机械振动时的损失,以及周围环境条件等的影响损失。谐振电阻较大或者较小对电路有不同的影响。
宇树机器狗今年的 CES 展上,机器人无疑是一大焦点。清洁机器人、工业机器人、医疗机器人、陪伴机器人等引人注目,各大科技公司纷纷展示了机器人在不同场景下的巨大应用潜力。然而,尽管过去几年在大语言模型和
1月23日,总部位于福州的昊盛科技集团旗下新美材料收购韩国LGC光学功能膜业务交割仪式,在福州长乐数字中国会展中心顺利举行,标志着我国新型显示产业正在摆脱偏光片上游材料受制于人的局面。交割仪式现场仪式
据晚点 Auto消息,近日,比亚迪汽车新技术研究院院长、比亚迪智驾总负责人杨冬生在技术院内部,谈了他对于技术研发、管理、制度等话题的看法,并提出了新的工作要求或者方向。他表示:“一个产品的先进和成功是
去年有望创下历来最佳业绩的SK海力士,已决定向员工发放每月本薪1,500%的绩效奖金,相当于15个月的年终,创下自家有史以来最高的奖金水准,显示其高频宽存储器(HBM)业务正得益于人工智能(AI)热潮
当前,人工智能(Artificial Intelligence,AI)发展势头愈发强劲,呈现出一种不可阻挡的迅猛态势。从广为人知的大型语言模型(Large Language Models,LLMs)如
本视频演示,如何将仿真器连接到使用安全ID锁定的RL78设备。  00:00:介绍 00:25:调试  00:40:设定安全ID  相关资源: • Visual Studio Code - 如何在安装
寒假到来,你是否已经计划好带着孩子来一场说走就走的旅行?无论是山川湖海,还是古城小镇,每一次旅行都充满了未知和惊喜。在这场旅行中,相机或手机将成为你记录美好瞬间的得力助手。当旅行结束,面对着一堆照片,
我是芯片超人花姐,入行20年,有40W+芯片行业粉丝。有很多不方便公开发公众号的,关于芯片买卖、关于资源链接等,我会分享在朋友圈。扫码加我本人微信👇TI(德州仪器)于1月23日(当地时间)公布了 20