效率是推动工业市场(包括消费市场)发展的动力。效率低下会影响电子系统的性能并缩短其使用寿命。为了提高效率,业界朝着更高的功率密度发展,产品可能变得更小、更轻、更可靠,消除了性能的限制,提高了数据中心和汽车系统的功率水平。
此外,随着联网设备的数量与日俱增,更高效的功率转换可以降低为数十亿台产品供电的总体账务成本。而且,由于设备数量庞大,提高整体效率也变得同样重要,因为能减少对环境的影响。
损耗是功率转换所特有的,减小损耗反过来又会降低效率,并增加系统散热负担。发热对半导体器件尤其有害,从电子设备中散去多余的热量会增加成本,并对环境造成危害。这驱使业界不断研发更高效的半导体器件,以提高功率转换效率,改善功率密度,降低电源管理的总体成本并减小对环境的影响。
传统的功率半导体一直采用硅衬底。然而,虽然硅是一种出色的通用半导体,但在高压时却受到很大限制。随着市场不断追求更大功率的器件,整个行业逐渐从硅转向更适合功率应用的宽禁带(WBG)半导体材料。相比晶体硅,WBG半导体能够在更高的开关频率下工作,同时将损耗保持在可控水平。
晶体管是微电子业的基础,构建晶体管的衬底决定了其行为表征,也因此决定了其特性和功能。晶体管本质上是一个压控开关,所需的功率越大,尺寸就越大。使用WBG材料可以解决这一问题。由碳化硅(SiC)或氮化镓(GaN)等WBG材料制成的晶体管,目前在汽车业和替代能源系统的电源系统中大受欢迎。
不过,目前WBG晶圆的供应链仍在优化中,它还不像硅晶圆那样拥有庞大的基础设施和成熟的供应链。批量生产需要稳健及经过检验的制造工艺,这带来了挑战,包括WBG晶圆测试的挑战,因为需要对工作于更高电流和电压下且体积更小的设备进行测试。
要在这样的挑战下提高效率,业界需要的衬底必须既能继续利用硅的规模经济效益,又能利用WBG半导体的优良性能。
目前最新且前景最好的半导体材料是氮化镓(GaN),可在各种衬底材料上制成高电子迁移率晶体管(HEMT)外延晶体管,适合RF、微波和毫米波(mmWave)应用中的高性能器件。GaN技术有两种形式:硅基GaN和SiC基GaN。SiC基GaN主要适合太空和军事雷达应用,RF工程师还在继续探索SiC基GaN的其他应用领域和解决方案。硅基GaN则促进了低成本大直径衬底的增长,让高产量的硅晶圆厂可生产这些器件。
硅基GaN功率晶体管比传统的硅功率晶体管效率更高,部分原因是转换器拓扑和技术的需要。峰值电流与反向恢复电荷有关,硅功率晶体管中的反向恢复电荷可能很大,因此不能用于具有重复反向恢复特性的转换拓扑,包括半桥拓扑。而GaN具有零反向恢复电荷,可用于以前没考虑过的电源拓扑。现在,正是新启用的拓扑与新的GaN技术结合起来,才使设计人员实现了更高的电源性能。
硅基GaN衬底提供了高集成度,可在单个衬底上集成低噪声放大器(LNA)、开关和功率放大器(PA),降低了成本,从而引发业界对硅基GaN的极大兴趣。
高集成度虽然具有优势,但首先还是需要使应用中高度互连的大功率终端具有连接性。图1显示了SiC基GaN在不同领域的应用。
图1:GaN市场演变。(图片来源:Yole Développement)
参数
尽管未来多年内硅半导体仍将是主流解决方案,但在某些应用中,客户却可以利用WBG半导体的优良特性,包括改善的禁带宽度(eV)、击穿场强(MV/cm)、热导率(W/cm-K)、电子迁移率(cm2/V-s)和电子漂移速度。无需从细节上进一步探讨半导体的物理特性,更优的参数性能便足以说明WBG半导体适合高压、高开关频率应用,同时还可以提高功率密度和散热能力。
WBG半导体功率开关的主要优点包括更高的电流密度、更快的开关速度和更低的漏源导通电阻(RDS(on)),对最终客户来说,使整个系统性能得到了极大的改善。在实际应用中,客户的设备可以在高温下工作,系统的整体尺寸减小了,重量也降低了。
消费市场趋势
说到GaN的实际应用,无线充电无疑是最热门的一个领域。在手机无线充电不断普及的同时,工业客户也开始利用GaN技术的优势。GaN在高频下明显表现出优于硅的特性。硅通常适合较低功率的应用,但随着应用需求增加到数十瓦甚至千瓦级别,效率变得越来越重要。更高的开关频率不仅可提高效率,还具有其他优势,使客户受益。
消费市场期待手机提供新功能,同时也要求手机具有更高的性能。高速数据传输、更大和更高质量的屏幕、面部检测功能以及下一个5G规格,都需要新的电源管理解决方案。新的功能需要性能更高或容量更大的电池,容量更大的电池则意味着充电时间更长。新的电源解决方案减小了便携式设备的外形尺寸,市面上还出现了可以快速为手机充电的新的充电解决方案。
目前的电池需要至少两个小时才能充满电,用户希望能够缩短手机充电时间,这推动电源解决方案从15W向100W提升。GaN在其中发挥了重要作用,它能够实现更高的功率,相较其他解决方案,给设备充电用时更短。
“中国OEM厂商OPPO公司2019年推出了业内首个采用氮化镓器件的快速充电器,”Yole Développement公司的技术和市场分析师Ezgi Dogmus说,“从那时起,这个市场的吸引力越来越大。在中国较有影响力的另一家OEM厂商小米最近也推出了基于GaN的快速充电器。”
“至于其它OEM大厂,三星已将GaN器件集成到其快速充电器中,据了解可能很快就会将GaN集成到其内置充电器中。”Dogmus补充道,“坊间有传言说,苹果和华为的下一代快速充电器也将采用氮化镓。过几个季度等官方消息发布之后,我们就会知道传言是否属实,但确定无疑的是,氮化镓具有巨大的吸引力。”
硅的应用仍然很广泛,特别是在30W以下的应用中。硅解决方案也仍然可以满足30至100W应用领域的需求,但氮化镓可提供更高的效率、更快速的充电,同时还具有热管理和设计优势,竞争力日益增强。
“OEM都想要体积小的快充,因为给手机配一个大充电器影响美感。”Dogmus说,“利用氮化镓就可以做到这一点。”
Yole预期不只是中国的OEM厂商,三星和苹果也会大量采用氮化镓。Dogmus说:“据我们所知,氮化镓制造商Power Integrations已宣布将为三星即将推出的充电器提供IC解决方案。”智能手机市场比其他任何消费市场都大得多,由于氮化镓非常适用于智能手机充电器,随着价格的下降,其销量将稳步增长。
Dogmus说:“所有OEM厂商都在试探市场对GaN产品的接受程度,同时进一步降低GaN产品的成本。因此,2020年和2021年将是GaN基功率器件的关键年。”
寄生电感会限制硅器件和更早的分立GaN电路的开关速度,集成是最大程度地减少延迟并消除寄生电感的关键。当传播延迟低至5ns、稳健的dv/dt高达200V/ns时,传统的65~100kHz转换器设计可以加速至兆赫兹甚至更高。这些集成电路可以将反激式、半桥式、谐振式及其他传统拓扑的性能扩展至兆赫兹,从而实现革命性项目的商业化应用(图2至图5)。
图2:GaN快速充电发展趋势。(图片来源:Yole Développement)
图3:Yole在2019年即预见到GaN大功率快充将快速发展。(图片来源:Yole Développement)
图4:功率与频率的关系。(图片来源:Yole Développement)
图5:功率GaN市场。(图片:Yole Développement)
汽车
最有趣及增长最快的一个应用是电动汽车(EV)非车载充电,其中包括快速充电器和充电站。SiC为这一应用增值不少。
在电动汽车和混合动力汽车(HEV)这两种应用中,SiC和GaN体现出了最好的经济效益,因为SiC和GaN器件可以在更高的电压和温度下工作,更耐用,寿命更长,开关速度也比传统半导体器件快得多。SiC已被多种应用所采纳,特别是在电动汽车中,可以应对高效率及大功率器件所面临的能源和成本挑战。
SiC在特斯拉逆变器中发挥了重要作用,在所有的电动汽车高压解决方案中也都一样。Yole指出,在车载充电器应用市场,SiC和GaN解决方案互相竞争,哪种方案更好取决于各OEM厂商的成本/性能策略。
“几乎所有OEM厂商都在关注碳化硅和氮化镓,没人会不在乎这两种技术,”Dogmus说,“这关系到成本与合格认证。也许从这个角度来说,碳化硅要稍微成熟一些,因为它已经通过了汽车行业认证,并且已经开始用在特斯拉和比亚迪等一些型号的主逆变器和车载充电器中。”
同时,诸如Efficient Power Conversion(EPC)公司和Transform公司等GaN供应商也为汽车行业提供了合格产品,包括适于EV/HEV应用的低压和高压技术。另外,Nexperia等其他公司也通过一些新的解决方案投身该市场。
Dogmus说:“未来一年我们会看到越来越多的氮化镓产品通过合格认证,并在成本和性能方面与碳化硅一较高下。”
(原文刊登于EETimes欧洲版,参考链接:Markets Turn to Wide-Bandgap Semiconductors to Increase Power Efficiency ,由Jenny Liao编译。)
本文为电子工程专辑姊妹网《电子技术设计》2020年11月刊杂志文章,版权所有,禁止转载。免费杂志订阅申请点击这里。