自动驾驶技术的一个关键问题是:自驾车的“软件驾驶”是否能与人类驾驶媲美?如果答案是肯定的,又会是何时发生?

我们都知道,开发安全的自驾车驾驶软件非常具挑战性,因此人们普遍认为最佳方法是先在相对较单纯的应用案例──例如低速度的货运自驾车、集货点间自动驾驶卡车、固定路线与低速自驾车,还有区域性的自驾出租车──布署自驾车。

其实大多数的人类驾驶表现相当好,特别是当他们专注于驾驶任务并且有多年驾驶经验时;不过问题就在于大部份驾驶人在开车时并非完全专心,或者是一些新手的驾驶技术无法达到因应困难路况的水平…还有年纪较长的人,其驾驶技能终究会有部份退化。

于是在全世界各地的交通意外事故数量达到了让人无法接受的水平──根据联合国的统计数据,全球因为道路交通事故而死亡的人数,一年达到135万人;光是在美国,因道路交通事故死亡人数在过去五年达到3万5,000至4万人。

车辆碰撞意外事故导致的总成本亦让人瞠目──美国运输部最近的研究数据显示,2010年全美交通意外事故总成本达到了2,420亿美元,占据GDP的1.6%、也就是每个美国国民得负担784美元。如果将生活质量估价与整体社会伤害成本(societal harm cost,其计算方法说明请参考报告连结) 也包括在内,该金额可高达8,360亿美元,相当于GDP的5.5%。

因此,开发自动驾驶车辆的一个重要理由是降低碰撞意外事故的成本与冲击;到目前为止,人为过失仍然占据超过九成的车辆碰撞意外事故原因。不过还有一个大问题是:相较于人类驾驶,自驾车软件驾驶是否能降低碰撞事故发生率?如果是,又要花多长的时间才能实现?

以下让我们来比一比自驾车软件驾驶与人类驾驶之间的优缺点;下表列出了几个比较项目,大多数都是人类驾驶会遇到的一些已知问题,也列出了几个软件驾驶可能遇到的状况。不过要特别说明的是,不同人类驾驶的技能差异很大,不同驾驶软件的发展情况也各不相同,笔者是以Waymo的数据作为基准,以进行一些数字比较和未来趋势的评估。

自驾车软件驾驶vs.人类驾驶。
(制表: Egil Juliussen)

驾驶执照

通过交通规则笔试还有路考以取得驾照,是人类驾驶被允许上路的基本条件,而且世界各国皆然(当然各地法规与考试内容不同)。而对自驾车软件驾驶来说,交通规则是被写进程序的,也能随着法规修改而更新,问题是目前并没有让软件驾驶“考驾照”的程序──这需要厘清并取得解决方案。目前自驾车测试是由具备不同程度能力检查的许可系统所控制。

驾驶经验

无论是软件或人类,驾驶经验都会是成为合格驾驶的关键。人类驾驶的驾驶技能与年资会呈现宽钟形曲线(wide bell curve),新手驾驶的驾驶技能随着时间往上提升,又因为年纪渐长、技能退化,最终无法再成为合格驾驶人。

自驾车软件驾驶的技能发展曲线则会与其市场渗透率成长曲线类似,但关键参数为何不得而知;我们只知道自驾车驾驶软件的技能虽然大幅提升,但仍有很长一段路要走。软件的驾驶技能成长与实际行驶里程数以及模拟(虚拟)驾驶里程数相关,也取决于各种自动驾驶技术例如传感器、人工智能(AI)、软件与处理能力。

分心

驾驶分心有三种:视觉(眼睛没看路)、手(离开方向盘)以及认知(心思不在驾驶)。驾驶分心是人类驾驶导致碰撞事故的主要原因之一,占据全美碰撞事故原因的18%,死亡事故原因的10%。自驾车软件不会发生任何一种分心,但是传感器仍然可能在分类物体时出问题,这就会像是驾驶人的视觉分心;不过随着感测技术演进,这就不再会是自驾车软件驾驶的问题。

超速

超速是最常见的人类驾驶肇事原因,占据整体死亡碰撞事故原因的32%以及所有碰撞事故原因的20%。软件驾驶是不被允许超速的,因此这应该不会成为自驾车发生碰撞事故的原因。

受到酒精/药物影响的驾驶

所谓的DUI (driving under influence)包括受到酒精与药物影响的两种驾驶行为;对酒驾的纪录追踪已经有40年以上的历史,因为药物导致的驾驶失能则资料有限。酒驾仍是导致碰撞事故的主要原因,但过去35年来已经逐渐减少;过去五年酒驾占据全美车辆碰撞事故原因的20%左右,该比例在2010年为35%,在1980年代则超过50%。

自驾车软件驾驶当然不会发生酒驾或受到药物影响,最可能导致软件驾驶失能的原因是黑客攻击。网络安全防护对自驾车来说虽会是个难题,仍可能取得成功──只要汽车产业开始推动布署新兴的网络安全标准,这就不会是个问题。

反应时间

人类驾驶的反应时间取决于驾驶经验以及许多个人因素;人类驾驶如果分心也会降低应变速度。自驾车软件的反应时间会比人类驾驶快,因为有众多传感器可提供360度环景,还有计算机的指令周期。

疲劳驾驶

疲劳驾驶会是人类驾驶常见的问题(至少在某一个时间段),但这永远不会发生在软件驾驶身上。但疲劳驾驶导致的碰撞事故统计数据很少。

气候

大多数人类驾驶能因应各种气候状况,目前在这方面是比自驾车软件驾驶来得优秀,但主要问题在于人类驾驶可能会在恶劣天气中过度自信。人类驾驶过度自信通常会表现在决定是否应该在恶劣天候中继续行驶,或者是没有放慢速度,特别是在下大雪的天气或道路淹水的情况;还有在大雾垄罩时车速太快。

目前的自驾车软件驾驶只能在良好天候中开车,还需要更多训练才能在恶劣天气中拥有跟人类驾驶媲美的技巧。但软件驾驶对于是否应该在恶劣天气下继续行驶的判断力应该更好。

极端案例

将极端案例最小化,是提升自驾车软件驾驶技巧的关键。极端案例就是软件驾驶遇到一个全新的驾驶情境,而且不知道该如何在这种情况下继续行驶。理想的状况是,所有的极端案例都是它们曾经学习过的,只是相当罕见,但目前的自驾车软件还没达到那个程度,需要仰赖更多的自驾车应用案例。

人类驾驶在因应极端案例时就拥有优势,能利用一些常识或者是扩展自己现有驾驶知识来因应;人类驾驶也知道如何与其他用路人进行沟通,例如透过一些简单的手势。

避免碰撞

避免碰撞发生主要来自于人类的驾驶技巧以及经验,对自驾车软件驾驶来说也是一样(技巧与经验的累积)。但人类驾驶得避免三种导致驾驶技能笨拙的因素:分心、超速以及失能驾驶。

软件驾驶也需要具备三个项目以最小化系统故障:一是需要故障弱化(fail-soft)架构,或称缓降(graceful degradation)机制;二是执行自驾车软件的硬件需要在每一个层面拥有备援;第三是当自驾车软件遇到另一种极端案例,远程人类操作员也能成为备援。

未来可能发生的问题

还有几个关于未来趋势、值得思考的有趣问题。目前有很多新车都配备了先进驾驶辅助系统(ADAS)功能,可警告人类驾驶注意或者自动启动简单的驾驶功能。这种趋势能降低碰撞事故率吗?早期的一些数据显示答案是肯定的,但接下来的问题是这些ADAS功能是否可能会让未来人类驾驶的技能钝化,因为他们没有机会练习某些驾驶技能?

驾驶人高龄化也是许多国家面临的问题,有充分的证据显示,当人类驾驶超过70岁,其驾驶技能就会慢慢退化;虽然这些高龄驾驶也会减少开车里程数,但是否会是车辆碰撞事故的一个负面影响因素?

自驾车软件驾驶也有一些在未来可能面临的问题,例如在自驾车上配备安全驾驶还需要维持多长时间?这会取决于不同自驾车应用案例,还有车辆是否支持远程操作员的备援。自驾车软件也会需要与其他用路人沟通,例如在车子外部装设显示器,还有车用通讯(V2X)技术,特别是车辆对行人(V2P)通讯──只要大多数智能型手机开始支持C-V2X功能。

与自驾车软件相关的最重要问题是:能在多快的时间内完成极端案例的学习?这个问题还没有明确的答案;某些自驾车应用案例会率先实现,就是因为极端案例较少。

总结

人类驾驶的碰撞事故统计数字相当具有启发性,显示全美占据整体碰撞事故原因的三个人类驾驶弱点是:分心、超速以及酒(药)驾。人类驾驶员对于极端案例的因应也相当拿手。软件驾驶刚好相反,以上三个人类驾驶的肇事原因都不是它们的问题;当然未来软件驾驶也会发生碰撞事故,但是目标是其肇事率要远远低于人类驾驶。

软件驾驶发生碰撞事故主要会来自于极端案例,因此其焦点会是要尽可能在短时间内快速学习最多的极端案例。不过还有一个关键的问题是:与人类驾驶需要负担的社会与碰撞事故成本相较,软件驾驶(包括以ADAS功能强化人类驾驶的技能)必须要能降低多少社会成本?

编译:Judith Cheng   责编:Yvonne Geng

(参考原文 :AV Software Driver vs. Human Driver,by Egil Juliussen )

  • 机器更多的是元件损坏风险,一旦出问题,就是致命的。以现在的科技水平,机器远远不如人工靠谱
阅读全文,请先
您可能感兴趣
新公司将包括本田、日产和三菱汽车,预计年销量将超过800万辆,成为世界第3大汽车制造集团。这将使新公司在全球汽车市场中占据重要地位,尤其是在与特斯拉和中国电动车品牌的竞争中。
面对AI时代带来的差异化趋势、软件应用及开发时间长、软硬件协同难、高复杂度高成本等挑战,国产EDA仍需不断探索和创新。
这些故障与特斯拉最新版本的HW4(内部代号为AI4.1)自动驾驶电脑紧密相关。有消息人士透露,在摄像头校准过程中,低压电池可能导致了电脑短路,这是目前调查中的一种可能性。
有鉴于电动汽车、自动驾驶和人工智能业务等未来增长潜力,以及在马斯克在当选总统特朗普政府中的“特殊地位”,多家分析机构认为,马斯克的财富未来还将进一步增长。
特斯拉Model Q内部代号为“Redwood”,车身长度约为3988毫米,比Model 3短了15%,车身重量减轻了约30%。同时,该车提供53kWh和75kWh两种规格的磷酸铁锂电池,续航里程预计可达500公里。
据CNUR统计,在2025年IEEE Fellow名单中,美国入选人数达136人,中国入选65人(含港澳台),紧随其后;日本、德国等国家均有10位入选。2025年IEEE Fellow名单的公布再次证明了中国科学家在全球科技舞台上的重要地位和影响力。
目前,智能终端NFC功能的使用频率越来越高,面对新场景新需求,ITMA多家成员单位一起联合推动iTAP(智能无感接近式协议)标准化项目,预计25年上半年发布1.0标准,通过功能测试、兼容性测试,确保新技术产业应用。
中科院微电子所集成电路制造技术重点实验室刘明院士团队提出了一种基于记忆交叉阵列的符号知识表示解决方案,首次实验演示并验证了忆阻神经-模糊硬件系统在无监督、有监督和迁移学习任务中的应用……
C&K Switches EITS系列直角照明轻触开关提供表面贴装 PIP 端子和标准通孔配置,为电信、数据中心和专业音频/视频设备等广泛应用提供创新的多功能解决方案。
投身国产浪潮向上而行,英韧科技再获“中国芯”认可
今日,长飞先进武汉基地建设再次迎来新进展——项目首批设备搬入仪式于光谷科学岛成功举办,长飞先进总裁陈重国及公司主要领导、嘉宾共同出席见证。对于半导体行业而言,厂房建设一般主要分为四个阶段:设备选型、设
来源:苏州工业园区12月17日,江苏路芯半导体技术有限公司掩膜版生产项目迎来重要进展——首批工艺设备机台成功搬入。路芯半导体自2023年成立以来,专注于半导体掩膜版的研发与生产,掌握130nm至28n
来源:观察者网12月18日消息,自12月2日美国发布新一轮对华芯片出口禁令以来,不断有知情人士向外媒透露拜登政府在卸任前将采取的下一步动作。美国《纽约时报》12月16日报道称,根据知情人士以及该报查阅
对于华为来说,今年的重磅机型都已经发完了,而明年的机型已经在研发中,Pura 80就是期待很高的一款。有博主爆料称,华为Pura 80将会用上了豪威OV50K传感器,同时电池容量达到5600毫安时。至
万物互联的时代浪潮中,以OLED为代表的新型显示技术,已成为人机交互、智能联结的重要端口。维信诺作为中国OLED赛道的先行者和引领者,凭借自主创新,实现了我国OLED技术的自立自强,成为中国新型显示产
12月18 日,据报道,JNTC与印度Welspun BAPL就车载盖板玻璃的开发及量产签订了投资引进业务合作备忘录(MOU)。资料显示,JNTC是韩国的一家盖板玻璃厂商。Welspun的总部位于印度
2024年度PlayStation游戏奖今日公布,《宇宙机器人》获得年度最佳PS5游戏,《使命召唤:黑色行动6》获得年度最佳PS4游戏。在这次评选中,《宇宙机器人》获得多个奖项,包括最佳艺术指导奖、最
阿里资产显示,随着深圳柔宇显示技术有限公司(下称:“柔宇显示”)旗下资产一拍以流拍告终,二拍将于12月24日开拍,起拍价为9.8亿元。拍卖标的包括位于深圳市龙岗区的12套不动产和一批设备类资产,其中不
在上海嘉定叶城路1688号的极越办公楼里,最显眼的位置上,写着一句话:“中国智能汽车史上,必将拥有每个极越人的名字。”本以为这句话是公司的企业愿景,未曾想这原来是命运的嘲弄。毕竟,极越用一种极其荒唐的
在科技浪潮翻涌的硅谷,马克·扎克伯格不仅是“脸书”帝国的掌舵人,更是以其谦逊低调的形象,在公众心中树立了独特的领袖风范。然而,在镁光灯难以触及的私人领域,扎克伯格与39岁华裔妻子普莉希拉·陈的爱情故事