当PCBA受到腐蚀而返回时,分析人员需要找到引起腐蚀的污染源,以便消除它。污染可能来自多种来源,例如制造作业、封装、安装和环境。有许多方法都可以用来确定污染物的组成。一旦知道了它的成分,就可以确定可能的来源。本文通过一个例子,说明了分析人员用来识别受腐蚀PCBA污染源的过程。

当印制电路板组件(PCBA)受到腐蚀而返回时,分析人员需要找到引起腐蚀的污染源,以便消除它。污染可能来自多种来源,例如制造作业、封装、安装和环境。 

有许多方法都可以用来确定污染物的组成。一旦知道了它的成分,就可以确定可能的来源。本文通过一个例子,说明了分析人员用来识别受腐蚀PCBA污染源的过程。

有几块受腐蚀的PCBA从客户那里返回,PCBA受到了严重腐蚀,但只是发生在它一边附近的几个位置。其中两块PCBA的腐蚀图像如图1和图2所示。

图1:PCBA上的导线开路。

图2:这张图像上可以看到有导线开路。

在两幅图中,下部的导体都出现了开路。阻焊层已经从导体上除去,暴露的铜受到严重氧化。在两块PCBA上,由导体之间烧焦的环氧树脂可知,它们之间发生了导电现象。这说明这一腐蚀本质上是离子腐蚀,并且由于环境的关系,有一层薄薄的水粘附到了PCBA上。

元素鉴定

腐蚀区域使用扫描电子显微镜(SEM)进行了成像。SEM通常配备有能量色散X射线探测器(EDX),从而可对样品的元素组成进行确定。EDX系统无法确定两种元素是否存在化学结合,但是知道存在哪些元素,从而可以借此对化学成分有所了解。

图3显示了受污染区域的SEM图像,由此便可获得EDX腐蚀数据,如图4所示。

图3:腐蚀区域的SEM图像。(二次电子成像,SEI)

图4显示了腐蚀区域附近阻焊层的典型EDX光谱和腐蚀光谱。蓝色光谱来自未腐蚀阻焊层区域,红色光谱是受腐蚀区域——这两个光谱表现出明显的差异。

图4:从光谱的y轴可知检测到的X射线数量,从x轴可知检测到的X射线能量。

阻焊层(蓝色光谱)中包含硅(Si),用于控制液体阻焊剂在固化前的粘度。它还包含钡(Ba)和硫(S),二者结合成硫酸钡而用作阻燃剂。所有这些元素包含在阻焊层中都是预期的,如蓝色光谱所示。

受污染的区域包含铜(Cu)和氯(Cl),这在阻焊层中找不到。铜来源于铜导体,其已经从金属导体中蚀刻并化学移除掉,现在沉积在阻焊膜上。氯是PCBA上不应存在的污染物。

在环境中的许多地方都可以找到氯——盐中含有氯,许多用于制造PCBA的化学品中也都含有氯。但是,这些化学物质不应该是氯的来源,因为在PCBA制造过程中在进行洗涤时会将其冲洗掉。在阻焊膜样品中未发现氯,因此可以不考虑PCBA的制造过程。

焊接过程中一直使用氯——为了促进良好的焊料连接,助焊剂中会添加氯化化合物。这些化合物可快速去除铜上的任何氧化物层,从而实现良好的焊料连接。 但是在从低共熔焊料转换到符合RoHS的焊料期间,所使用的助焊剂类型也受到了更改。助焊剂中代替氯化松香焊剂,使用了包含有机酸的低固含量焊剂来清洁铜表面而实现焊接。在焊接过程中,有机酸通常会因加热而分解成无害的产物。这些PCBA是在推出符合RoHS的焊料之后制造的,并使用了低固含量的有机助焊剂制造。

腐蚀只孤立在PCBA的一个区域。如果空气中的盐水雾或氯蒸气中存在氯,则氯会存在于整个PCBA中。氯用于各种工业过程(以及游泳池),导致这些区域的空气中存在氯和氯化合物。

通过对PCBA的目视检查发现,腐蚀区域附近的几个元器件经过了返工。目视检查表明,助焊剂残留物不是来自低固含量的有机酸助焊剂。

这些返工位置使用SEM的EDX系统进行了检查,发现助焊剂残渣中含有氯。助焊剂中含有氯,表明在元器件返工期间使用了老式的活化助焊剂。然后在装配车间发现了这一助焊剂的来源,并将其作为纠正措施予以消除——有个返修工位有瓶老式液体助焊剂尚未从工厂清除。

如果未将氯追溯到返工过程中所使用的助焊剂,那么这个必要的纠正措施可能就不会采取,而可能在几个可能的地方采取纠正措施而消除污染。在这种特定情况下,活化松香焊剂是之前工艺的保留物,尚未从这个返修工位清除。其他消除污染的措施就都会无效。纠正措施必须要根据调查期间所收集的证据。而如果用散弹法(shotgun approach)消除氯化助焊剂,则可能不会在单个返修工位发现这瓶助焊剂,而无法消除问题。

EDX如何工作?

在样品内,当电子改变其能量而填充原子内的空位时,EDX系统会捕获到其所产生的X射线。它会计算每个能量水平下所捕获的X射线的数量。原子内原子核周围的每个电子都有特定的能量,这些能量因元素的不同而异。由于这些能量不同,便可以确定样品的原子组成。

SEM发射到样品上的电子会与每个原子的电子相互作用。在某些情况下,这种相互作用会导致原子的电子逃逸出原子,从而留下空位。如果原子有第二个具有更高能量的电子填补此空位,则必须要释放一定的能量。释放的能量会表现成特定能量或波长的X射线形式。通过捕获和测量这些X射线,就可以汇总出所存在元素的列表。EDX系统的软件就会将数据显示在图表上——X射线的能量会显示在横轴上,而计算的X射线的数量则显示在纵轴上。

(原文刊登于EDN美国版,参考链接Corrosives on a PCB: Finding the source,由赵明灿编译)

责编:Yvonne Geng

阅读全文,请先
您可能感兴趣
欧洲PCB产业的衰退与全球产业转移和技术发展紧密相关。随着全球制造业向亚洲地区特别是中国集中,目前欧洲的PCB制造工厂数量已不足180家,而对中国制造的PCB依赖却在不断增加。
麦当劳对讲机火了,有的工程师职业病犯了,直接拆解看构造和芯片;有些发烧友把自己的对讲机调频至409.9MHz频率,就为了听到麦当劳对讲机的各种对话的信息……
新一代CoWoS 封装技术采用的一种创新硅中介层,其尺寸是光掩模(Photomask,也称 Reticle,大约为 858 平方毫米)是 3.3 倍。
2024年2月28日,惠州华颖电子管理人发布“关于表决《惠州市华颖电子科技有限公司破产财产分配方案》的通知书”。这意味着这家广东老牌PCB厂的破产清算程序已经进入了最后阶段。
电流检测电阻通常被称为电流分流器,可以用来准确检测负载中的电流。这些分流电阻与负载串联,电阻上产生的电压与流过它的电流成正比。但在大电流应用中,检测电阻的体积通常将会很大,并以发热的形式耗散大量功率。在这些设计场景中,利用印刷电路板上现成的覆铜迹线来检测电流,可能是一种不错的解决方案。
近日,英飞凌推出可生物可降解的印刷电路板(PCB)基板的演示内容引起热议,该PCB板采用Jiva Materials Ltd公司最新研发的Soluboard材料,Soluboard®是通过聚合物和无卤阻燃剂浸渍天然纤维制成,是一种完全可生物降解的材料。
目前,智能终端NFC功能的使用频率越来越高,面对新场景新需求,ITMA多家成员单位一起联合推动iTAP(智能无感接近式协议)标准化项目,预计25年上半年发布1.0标准,通过功能测试、兼容性测试,确保新技术产业应用。
中科院微电子所集成电路制造技术重点实验室刘明院士团队提出了一种基于记忆交叉阵列的符号知识表示解决方案,首次实验演示并验证了忆阻神经-模糊硬件系统在无监督、有监督和迁移学习任务中的应用……
C&K Switches EITS系列直角照明轻触开关提供表面贴装 PIP 端子和标准通孔配置,为电信、数据中心和专业音频/视频设备等广泛应用提供创新的多功能解决方案。
投身国产浪潮向上而行,英韧科技再获“中国芯”认可
来源:苏州工业园区12月17日,江苏路芯半导体技术有限公司掩膜版生产项目迎来重要进展——首批工艺设备机台成功搬入。路芯半导体自2023年成立以来,专注于半导体掩膜版的研发与生产,掌握130nm至28n
来源:观察者网12月18日消息,自12月2日美国发布新一轮对华芯片出口禁令以来,不断有知情人士向外媒透露拜登政府在卸任前将采取的下一步动作。美国《纽约时报》12月16日报道称,根据知情人士以及该报查阅
‍‍12月18日,深圳雷曼光电科技股份有限公司(下称“雷曼光电”)与成都辰显光电有限公司(下称“辰显光电”)在成都正式签署战略合作协议。双方将充分发挥各自在技术创新、产品研发等方面的优势,共同推进Mi
有博主基于曝光的信息绘制了iPhone 17系列渲染图,对比iPhone 16系列,17系列最大变化是采用横置相机模组,背部DECO为条形跑道设计,神似谷歌Pixel 9系列,这是iPhone六年来的
来源:IT之家12 月 18 日消息,LG Display 韩国当地时间今日宣布,已将自行开发的“AI 生产系统”投入到 OLED 生产线的日常运行之中,该系统可提升 LG Display 的 OLE
在上海嘉定叶城路1688号的极越办公楼里,最显眼的位置上,写着一句话:“中国智能汽车史上,必将拥有每个极越人的名字。”本以为这句话是公司的企业愿景,未曾想这原来是命运的嘲弄。毕竟,极越用一种极其荒唐的
 “ AWS 的收入增长应该会继续加速。 ”作者 | RichardSaintvilus编译 | 华尔街大事件亚马逊公司( NASDAQ:AMZN ) 在当前水平上还有 38% 的上涨空间。这主要得益
今天上午,联发科宣布新一代天玑芯片即将震撼登场,新品会在12月23日15点正式发布。据悉,这场发布会联发科将推出全新的天玑8400处理器,这颗芯片基于台积电4nm制程打造,采用Arm Cortex A
点击蓝字 关注我们电网和可再生能源系统向着更智能、更高效的方向发展助力优化能源分配构建更加绿色和可靠的能源未来12 月 24 日 上午 9:30 - 11:302024 德州仪器新能源基础设施技术直播
亲爱的企业用户和开发者朋友们距离2024 RT-Thread开发者大会正式开幕仅剩最后3天!还没报名的小伙伴,抓紧报名噢,12月21日不见不散!大会时间与地点时间:2024年12月21日 9:30-1