以太网络供电(PoE)是IEEE 802.3af和802.3at标准定义的一种连网功能。 PoE使以太网络电缆可以透过现有数据连接线同时向网络装置供电和传输数据。IEEE 802.3bt标准已于2018年9月27日获得IEEE-SA标准委员会批准,可透过以太网络链路传输更多电力。本文将讨论此标准重要性以及工程师如何利用其潜在优势。

无线网络架构随时可用,为何我们仍在使用有线连接?好吧,无线连接很方便,但建筑物和家庭中已有数百万英哩的有线CAT5e电缆,因此有线连接仍在使用中,而且有线比无线更难被黑客入侵或拦截(企业网络如大学通常都是有线的),较长的有线电缆成本也很低。如果有一幢由砖、石头和金属构成的建筑物,通常在许多情况下都能获得良好的无线讯号(5G具有更好的室内覆盖范围,但完全布署还需时日),若要接入以太网络电缆讯号就得穿墙。无线网络更容易受到其他讯号和无线电波的干扰,但有线电缆通常被屏蔽并提供“即插即用”体验,并且具有更好的服务质量(QoS)。

802.3bt系统架构

802.3bt系统架构使用供电端装置(Power Sourcing Equipment,PSE),一种可透过以太网络电缆为受电装置(PD)供电的电源控制器。IEEE 802.3bt标准指出:“PD是消耗功率或透过参与PD侦测算法要求电源的装置;能够成为PD的装置或具有从备用电源汲取电力的功能,需要透过电源接口(PI)供电的PD则可能同时从备用电源汲取电力。”典型的PD包括IP电话、无线接取点、保全摄影机等等从以太网络电缆接受电力的装置,PI是PSE或PD与传输介质之间的机械和电气接口;这些收录于IEEE802.3bt标准的“PD PI当前定义”(PD PI Current Definitions)第1.4.324节中。

以往的PoE标准仅使用以太网络电缆中8条导线中的4条来传输直流电流,IEEE工作小组选择对802.3bt使用所有8条导线。IEEE Std 802.3bt-2018修正案2 (Amendment 2)指出:“此修正案使用结构化布线设备中的所有4对电线,增加了功率传输,从而为终端装置提供了更大的功率。 该修正案还降低了终端装置的待机功耗,并增加了一种机制来更好地管理可用功率预算。”

IEEE标准委员会的目标是提高从PSE到PD的电量。提供给PD的这些额定功率水平高达71.3W (有90W供电来自PSE),同时大大降低了PD休眠时所需的待机功耗。

自动分类功能

IEEE 802.3bt标准的第145.8.8.2节,对物理层分类提供了可选择的扩展功能,称为“自动分类”(Autoclass);启用此功能后,PSE会确定所连接的PD装置消耗的实际最大功率。自动分类仅定义单特征PD;有关单特征(single signature)定义将于下一章节讨论。

当PSE执行Autoclass功能时,会在POWER_ON且pd_autoclass为TRUE时量测PAutoclass。本文稍后会提到一个802.2bt的“最坏情况”范例,显示发送给PD的功率未达到所需满功率的情况,如果启用Autoclass功能就能纠正这种情况。

单特征/双特征

IEEE 802.3bt提供两种新的PD拓扑,分别称为单特征和双特征(Single-signature/Dual-signature)。 单特征PD在两个线对之间具有相同的分类、维持功率特征(Maintain Power Signature,MPS)和检测特征,双特征PD在两个线对之间具有独立不同的特征。802.3bt标准透过新添加的连接检查(Connection Check)实现区分功能,以识别单特征或双特征PD链接之间的差异。

双特征PD将需要两个平行的PD接口,因为在此拓扑中需要两个不同的线对集(pair sets);每个PSE的电力在每个PD界面之后汇集。这是个成本更高的方案,设计人员可能会选择成本低一半的单特征方案。举例来说,双特征架构的保全摄影机其中一个线对与摄影机连接,另一个线对则是与加热器或平移/变焦马达相连。

对于来自PSE的每个数据对,PD端通常也需要一个变压器(参考图1的GB以太网络,其中Vpd,B可能是10 / 100Base-T)、一个主动桥式整流器、一个802.3bt PD接口控制器和一个DC-DC转换器。萧特基二极管、电阻器和电容器也可理解为PD附加组件的可能部分。

图1:802.3bt PD端应用电路图,安森美半导体的FDMQ8205A桥式整流器和NCP1096 PoE-PD接口控制器。
(图片来源:ON Semiconductor)

图2显示,Type 4、Class 8可能消耗的最大功率为71.3W。PSE最低电压为52V,最坏情况下的支持通道电阻为6.25ohm,1.73A的电流将流经电缆。

图2:最坏情况下的信道为6.25Ohms,负载的横定功率为71.3W (Class 8)。每条导线1.73A或0.433是可在兼容系统中流动的最高额定电流。
(图片来源:Practical PoE Tutorial, Chris DiMinico, MC Communications/Panduit; Chad Jones, Cisco Systems; Ron Nordin, Panduit; Lennart Yseboodt, Philips Lighting, IEEE802.org, Berlin, Germany 2017)

PD端的潜在问题以及可行的解决方案

IEEE 802.3bt标准指出:“PD在与电缆的实体连接点是被具体指明的,而因为电压校正电路、电源效率不彰、内部电路与外部接地之间的分离造成的损耗等特性,或是PI连接器之后电路引起的其他特性等并未指明。除非有具体说明,否则为PD定义的限制是在PI上指明,而非PD内部的任何一点上。”

要打造真正耐用的设计架构,以下是设计工程师应该考虑的几个领域:

1. 注意因为PSE和PD之间信道中其他组件(如二极管、变压器等)引起的电流不平衡(参考图3)。只要设计工程师意识到这种不平衡,就可以采用创造性的方法来舒缓这种不平衡。这会取决于设计架构,一些可靠的规则是使用良好的接地平面以及承载大电流的宽接地回路。

2. 以太网络电缆中的线对线间电流不平衡。这个问题电缆供货商很少测试或提供设计人员线对线不平衡规格,他们通常只会指明线对内的不平衡。

图3:PD电流不平衡验证电路。
(图片来源:IEEE Standard for Ethernet Amendment 2: Physical Layer and Management Parameters for Power over Ethernet over 4 pairs, IEEE Standards Association, IEEE Computer Society, IEEE Std 802.3bt-2018)

3. 当心电缆发热。通常可取得大量的电缆发热数据,但设计人员需要保持温升控制。IEEE工作小组判定温升极限值应小于摄氏10度,他们采用300mA电流流经所有电缆导线,就像在不失衡的情况下,为每100公尺(m)长度的电缆末端传送51W功率。设计工程师可尝试一些方案,例如使用较低电阻的电缆来减少I2R损耗,在每个线束中使用较少的电缆,或仅在电缆线束中部分供电。正确判定确定任何既有电缆耗散(即发热)的方法,是使用恒定功率散热片作为负载,并使用电压源作为输入电源。一些电缆发热研究会测试2.0A时的电缆线束,因此如果使用24AWG电缆,电缆功率密度为164 mW/m。功率密度是每单位长度电缆耗散的功率,因此:164 mW/m = ((2.0A)2x 4.09 ohms)/100m);通道电阻(RCh)基于24 AWG固态铜在20℃的电阻率。

图4:信道是24 AWG UTP,负载为恒定的2.0A。
(图片来源:Practical PoE Tutorial, Chris DiMinico, MC Communications/Panduit; Chad Jones, Cisco Systems; Ron Nordin, Panduit; Lennart Yseboodt, Philips Lighting, IEEE802.org, Berlin, Germany 2017)

4. 输送到PD的功率(PD是恒定功率负载)与PSE功率输出之间存在非线性关系。PD的功率需求各不相同,PD若需要更大电流意味着电缆中的压降更高并有IR损耗;PD获得的电压低于所需电压,才需要更大电流。事实证明,在较低电流下使用较高的PD电压可稳定此效果,为安全起见,PSE电压应以不超过57V为限。

PD测试

如果制造商有开发板或参考设计,请务必用以打造你的新应用;这些开发板以恰当的布线和接地技术精心制作、可提供最佳架构性能。通常也能从制造商取得Gerber档,请在设计中使用它们,这些方法将免除对最终设计进行大量测试的需要。

对于设计的生产测试以及在实际系统中的测试也有一些很好的解决方案,如Reach Technology的PoE5 100W PoE测试仪,或RT-PoE5 IEEE 802.3bt以太网络供电PSE生产测试仪。美国新罕布什尔大学的互操作性实验室(The University of New Hampshire InterOperability Laboratory),是提供测试PoE认证的独家第三方测试机构。此外Sifos Technologies拥有支持IEEE 802.3bt PoE的小巧PowerSync分析仪,有助于进行4线对测试。以上解决方案都有助于确保系统的坚固耐用。

结语

本文旨在介绍PoE和IEEE802.3bt规格,期望读者能了解PD和PSE的定义,以及它们在提供恰当讯号和功率传输方面的优势与限制,并充分理解该标准及其在PoE系统中的增强功能。而重点如正如本文所强调的,IEEE 802.3bt标准能让设计工程师为PD提供更高的功率,以及更多样化的能源选项。

此外本文还解释了为什么在无线技术当道的世界中以有线技术连结,能带来强化的安全性、同时提高可预测性和可靠性。现有的广泛有线基础设施皆已布署到位,其环境干扰远低于无线环境,系统成本更低、QoS更高。读者也能从前面的介绍中了解设计802.3bt标准PD时需要考虑的重点,以及系统测试方法,才能避免潜在缺陷、实现耐用可靠的系统设计成果。

责编:Yvonne Geng

阅读全文,请先
您可能感兴趣
碳化硅(SiC)衬底已在电动汽车和一些工业应用中确立了自己的地位。然而,近来氮化镓(GaN)已成为许多重叠应用的有力选择。了解这两种衬底在大功率电路中的主要区别及其各自的制造考虑因素,或许能为这两种流行的复合半导体的未来带来启示。
对于大多数片上系统(SoC)设计而言,最关键的任务不是RTL编码,甚至不是创建芯片架构。如今,SoC主要是通过组装来自多个供应商的各种硅片知识产权(IP)模块来设计的。这使得管理硅片IP成为设计过程中的主要任务。
英特尔的嵌入式多裸片互连桥(EMIB)技术,旨在解决异构集成多芯片和多芯片(多芯粒)架构日益增长的复杂性,在今年的设计自动化大会(DAC)上掀起了波澜。它提供了先进的IC封装解决方案,包括规划、原型设计和签核,涵盖了2.5D和3D IC等广泛的集成技术。
一项技术要想产生广泛的影响,它不仅要解决短期的挑战,还应该超越现有技术的进步,为未来的创新打开大门。这就是我们对泛林集团(Lam Research)今年早些时候推出的全球首个用于半导体量产的脉冲激光沉积(PLD)技术的描述。
能量采集是低功耗电子设备供电技术发展的基本支柱,为实现对环境影响最小的可持续技术的未来铺平了道路。
许多人都听说过缓存一致性这个术语,但并不完全了解片上系统(SoC)器件,尤其是使用片上网络(NoC)的器件中的注意事项。要了解当前的问题,首先必须了解缓存在内存层次结构中的作用。
• 得益于西欧、关键亚洲市场和拉丁美洲市场的增长,以及中国品牌的持续领先,全球折叠屏手机出货量在2024年第二季度同比增长了48%。 • 荣耀凭借其在西欧特别强劲的表现,成为最大的贡献者,成为该地区排名第一的品牌。 • 摩托罗拉的Razr 40系列在北美和拉丁美洲表现良好,为其手机厂商的出货量贡献了三位数的同比增长。 • 我们预计,头部中国手机品牌厂商的不断增加将至少在短期内抑制三星Z6系列在第三季度的发布。
AI技术的发展极大地推动了对先进封装技术的需求,在高密度,高速度,高带宽这“三高”方面提出了严苛的要求。
奕斯伟计算2024首届开发者伙伴大会以“绿色、开放、融合”为主题,从技术创新、产品应用、生态建设等方面,向开发者、行业伙伴等相关方发出开放合作倡议,加速RISC-V在各行各业的深度融合和应用落地,共同推动RISC-V新一代数字基础设施生态创新和产业发展。
2024年 Canalys 中国云计算渠道领导力矩阵冠军厂商分别是:阿里云、华为云和亚马逊云科技(AWS)
点击蓝字 关注我们德州仪器全球团队坚持克服挑战,为电源模块开发新的 MagPack™ 封装技术,这是一项将帮助推动电源设计未来的突破性技术。  ■ ■ ■作为一名经验丰富的马拉松运动员,Kenji K
文|沪上阿YI路特斯如今处在一个什么样的地位?吉利控股集团高级副总裁、路特斯集团首席执行官冯擎峰一直有着清晰的认知:“这个品牌的挑战依然非常大。首先,整个中国市场豪华汽车整体数据下滑了30%~40%,
文|萝吉今年下半年开始,国内新能源市场正式跨过50%历史性节点,且份额依然在快速增长——7月渗透率破50%,8月份破55%……在这一片勃勃生机万物竞发的景象下,新能源市场占比最高的纯电车型,却在下半年
会议预告向世界展示中国最具创新力、领导力和品牌化的产品与技术!9月27号,“第6届国际移动机器人集成应用大会暨复合机器人峰会”将在上海举行,敬请关注!再度出现,能否再次“出线”?文|覃洁兰近日,曾经在
在德国柏林举行的IFA 2024上,AMD计算和图形业务集团高级副总裁兼总经理Jack Huynh宣布,公司将把以消费者为中心的RDNA和以数据中心为中心CDNA架构统一为UDNA架构,这将为公司更有
会议预告向世界展示中国最具创新力、领导力和品牌化的产品与技术!9月27号,“第6届国际移动机器人集成应用大会暨复合机器人峰会”将在上海举行,敬请关注!逐个击破现有痛难点。文|新战略半导体行业高标准、灵
‍‍‍‍上市PCB厂商竞国(6108)日前出售泰国厂给予陆资厂胜宏科技后,近日惊传台湾厂惊传12月前关厂,并对客户发布通知预告客户转移生產,最后出货日期2024年12月25日。至於后续台湾厂400名员
在苹果和华为的新品发布会前夕,Counterpoint公布了2024年第一季度的操作系统详细数据,数据显示, 鸿蒙操作系统在2024年第一季度继续保持强劲增长态势,全球市场份额成功突破4%。在中国市场
随着汽车智能化升级进入深水区,车载ECU(域)以及软件复杂度呈现指数级上升趋势。尤其是多域、跨域和未来的中央电子架构的普及,以及5G/V2X等车云通信的增强,如何保障整车的信息与网络安全,以及防范外部