结合Big Data预测分析以及AI和各种传感器,可望有效控制COVID-19疫情扩散以及减少致死病例,凝聚全球打赢这场看不见“敌人”的战“疫”...

新型冠状病毒肺炎(COVID-19)源于一种与严重急性呼吸道症候群(SARS)和普通感冒有关的冠状病毒。结合大数据(big data)和预测分析,以及人工智能(AI)和各种热传感器,可望有效控制这种传染病的疫情扩散,从而使其致死病例数降至最低。

由于目前对于这种病毒的检测能量有限,经常无法确定究竟有多少受到感染的病例数,使得这种病毒的真正危险性仍令人存疑。数据分析技术对于支持流行病学专家具有决定性的贡献。

数据分析就和数学一样,扮演着基本的作用。如同过去几年一样,数据科学先驱对于世界的影响深远,在疾病扩散之际,利用数据和分析推动重大改变与进展。从历史发展轨迹来看,数据分析的最早应用之一是在1854年伦敦宽街霍乱爆发(1854 Broad Street cholera outbreak)事件。第一批数据导向的流行病学家之一约翰·斯诺(John Snow)对于伦敦的致死案进行地理空间分析,从而隔离了疾病的来源。根据John Snow的分析,英国当局才能精准地采取防疫措施,迅速掌握传染病的扩散。

如何评估数据?

透过数据分析系统执行各种模型,已经证实能够大致上评估趋势的发展。例如最常见的“易感-感染-康复”(Susceptible-Infective-Recovered;SIR)模型,这种流行病学模型用于计算“在一个存在具传染力病例的密闭空间中,被感染病例随着时间逐渐增加的理论数”。该模型使用耦合方程式分析易感染人数S(t)、被感染人数I(t)以及康复人数R(t)。最简单的SIR模型之一是Kermack-McKendrick模型,这种流行病模型也被认为是许多其他同类分析模型的基础,其中,我发现Ettore Mariotti的分析最有意思。

首先要有一个岛屿,即人们无法自由进出的系统。在某个特定时间下,每个人可能存在以下某种状态之一:“易感染”、“被感染”和“康复”,因为从未患此病的人(S)很可能发病并在某个时间被感染(I),然后康复(R)。以CoVID-19而言,更适于为此SIR模型中增加一项“已暴露”(Exposed)状态,这包括了带有病毒但尚未感染确诊者(无症状带原者)——SEIR模型。

图1:SEIR模型(来源:triplebyte.com)

该SEIR模型考虑了两项因素:病毒的动态以及个体之间的互动。后者极其复杂,因而需要采用数据分析技术。透过这些模型与技术,让我们可以定义R0参数,用于表示被每一位感染者可能传染的人数。

例如,假设某个人A发病了,而系统中的R0 = 2,这表示A将会传染给2个人。这2个人分别传染给4个人,而这4个人将会分别再传染给2个人(因此4 x 2 = 8),依此类推。这突显了疾病是以乘法而非累加方式快速扩散。R0可以发生如图2所示的3种基本情况。

图2: R0基本情况(来源:Triplebyte.com)

关闭学校、体育馆等,减少了人们的社交互动,因而降低了R0。医疗系统是有限的,因此,将此参数降低到低于1极其重要。如果R0 > 1,那么疾病就会传播开来;唯有当R0 < 1时,才能让疾病消失。因此,为了减少R0,我们可以合理地期望政府采取更严格的政策来限制人们的行动性。

值得注意的是,R0衡量的是疾病的潜在传播途径,而非疾病传播的速度。以流感病毒的普遍性来看,其R0仅为1.3。R0值过高是引发群众担忧的原因,而不是引起恐慌的原因。

R0是平均值,因此可能受到超级传播者事件等因素影响。超级传播者是指一个被感染者传染给很多人。在SARS和MERS流行期间以及目前的Covid-19大流行期间,发生了多起与超级传播者有关的事件。这一类事件并不一定是坏兆头,因为它们可能显示持续让疫情流行的人数减少了。而且超级传播者可能也更易于掌握和遏止,因为他们的症状可能相当严重。

简言之,R0是持续变动中的参数。追踪每一个确诊案例以及疾病的传播极其困难,因此,R0的估算既复杂又具挑战性。其估算值经常随着新数据出现而改变。

那么,哪些技术解决方案能够减缓或终止Covid-19的传播并有效控制R0?当然,利用最新的AI技术结合手机GPS移动的数据,可以建立分析模型,用于预测哪些小区更有可能发生未来感染状况或哪些小区需要紧急采取消毒等行动。

大数据、AI与传感器

以传染病而言,临床数据在质和一致性方面的变动可能较大,甚至包括出现假阳性患者。大数据和AI可用于检查是否达到隔离要求,而机器学习则可用于药物研究。这些都是新数字技术为缓解冠状病毒紧急情况而发展出来的解决方案,像是许多亚洲国家,还采用数字技术成功实施各种防疫措施。

配备智能扫描仪和相机系统的无人机可用于检测那些不遵守隔离措施的民众,还可以量测人们的体温。例如中国大陆和台湾使用智慧相机拦截未戴口罩者,同时执行实时热感应以侦测是否有发烧的情况。

例如,中国AI公司SenseTime开发了一款即使戴着口罩也能扫描人脸的平台,而阿里巴巴(Alibaba)则开发了基于AI的新型冠状病毒诊断系统。SenseTime的非接触式温度检测软件已经实施于北京、上海和深圳的地铁站、学校和公共中心。同时,阿里巴巴开发基于AI的Covid-19诊断系统透过计算机断层扫描(即CT扫描)检测是否感染新型冠状病毒,据称准确率高达96%。

图3:病毒的进化(来源:graphen.ai)

Graphen与美国哥伦比亚大学(Columbia University)合作,尝试定义每个病毒基因定序的典型形式,并找出其变体。它采用仿真人脑功能的Ardi AI平台,储存这些变异的数据并使以可视化呈现。在图3中,每个红点代表一个病毒,绿点则代表一组具有相同的基因组序的病毒。点选红点还可查看病毒的信息,包括位置、性别与年龄等。

大数据是控制疫情的另一种有效工具。在紧急期间,它已被广泛用于改善监控系统,以绘制病毒传播图。

大数据的撷取和处理,需要设计用于收集和分析的新方法和新技术。例如以下四种大数据分析类型或方法:

• 描述性分析:发生了什么?描述业务流程或计划的现在与过去情况,以综合和视图方式呈现活动的绩效指标;

• 预测性分析:将发生什么?即使用回归分析和预测模型等数学技术,协助了解未来可能发生事件的资料分析工具;

• 规范性分析:需要做什么?用于确定有效的策略和营运解决方案;

• 自动化分析:根据执行分析的结果自动执行所需的操作与行动的工具。

阿里巴巴还开发了Alipay Health Code行应用程序(App),利用中国医疗保健系统提供的大数据,指示谁可以或被限制进出公共空间。

多伦多新创公司BlueDot采用AI建构的平台,开发可自动监控传染病扩散与预测的智能系统。在SARS传播期间,BlueDot平台已经取得了具体成效。2019年12月,BlueDot就曾经针对这种冠状病毒症状的严重性提出警告,如今也证实了其准确性。在BlueDot使用的工具中,还有一些采用自然语言处理(NLP)技术,可用于处理人们的语言及其表达方式。

美国生物科技公司Insilico Medicine同样致力于以AI预防疾病。该公司正开发下一代AI和深度学习途径,并将其应用于药物探索与开发过程中的每一步骤。Insilico Medicine目前开发的新技术,未来将可用于建议医师如何对抗冠状病毒分子的信息。在最近的分子分析后,Insilico Medicine的系统能够针对如何有效对抗冠状病毒提供反馈信息。该新创公司现正开发可为疫苗开发项目提供相关信息的数据库。

WeBank研究人员则采用卫星分析技术,确认炼钢厂中的热点所在,为产业的复苏提供了重要信息。

在疫情流行初期,这项分析显示钢铁产量降低至29%的最低产能水位。到了2月9日则恢复到76%。研究人员紧接着关注使用AI的其他生产类型和商业活动,其中之一是用于简单地计算大型公司停车场中的汽车数量。该分析显示,截至2月10日,在上海的特斯拉(Tesla)汽车生产已经完全恢复,而上海迪斯尼乐园(Shanghai Disneyland)等旅游景点仍在关闭中。

图4:比较2019年12月30日(左)和2020年1月29日的并排卫星影像显示,中国的钢铁产业活动仍处于低水位
(来源:spectrum.ieee.org)

透过分析GPS卫星数据,还可以确定哪些人正在通勤中。软件可用于计算每座城市中的通勤人数,并比较2019年与2020年同一日期的通勤人数。无论是2019还是2020年,在中国农历新年期间的通勤人数都大幅减少,但相较于2019年,2020年假期后上班人数并未恢复。随着疫情状况逐步受到控制,WeBank研究人员还计算出,截至今年3月10日,中国约有75%的员工已经返回工作岗位。根据这些曲线预测,研究人员的结论是,除了武汉之外,大多数的中国工人将在3月底恢复正常工作。此外,研究人员并预期今年第一季的经济成长将达到36%。

如今,全球各地的科学家和研究人员也在设法克服COVID-19的挑战,各种新技术正成为其有利的后盾。成功通过此次紧急状况考验的技术与解决方案,可望成为日后的产业标准。

编译:Susan Hong  责编:Yvonne Geng

(参考原文:Big Data and Artificial Intelligent Can Save the Earth From Covid-19,by Maurizio Di Paolo Emilio)

阅读全文,请先
您可能感兴趣
9月10日,苹果发布了一系列新品,包括iPhone 16系列手机、Apple Watch Series 10智能手表和AirPods 4耳机。发布会后网上响起了一片吐嘈声,带着这些吐槽,我们来看看这次苹果到底有没有新玩意……
Rambus的HBM4控制器IP还具备多种先进的特性集,旨在帮助设计人员应对下一代AI加速器及图形处理单元(GPU)等应用中的复杂需求。这些特性使得Rambus在HBMIP领域继续保持市场领导地位,并进一步扩展其生态系统支持。
2016-2023年中国独角兽企业总估值由近5000亿美元持续攀升至超1.2万亿美元,其中在2020年首破万亿美元。
HBM4作为第六代HBM芯片,不仅在能效上较现有型号提升40%,延迟也降低了10%,成为各大芯片厂商竞相追逐的焦点。
对于股价波动的原因,寒武纪表示,除了公司经营层面的因素外,还可能受到其他因素的影响。寒武纪还提醒投资者,应甄别信息来源,具体情况以公司公告为准。
此次财报也从侧面反应了半导体行业在AI业务上的强劲增长势头,但同时也暴露出非AI业务增长乏力的困境。
• 得益于西欧、关键亚洲市场和拉丁美洲市场的增长,以及中国品牌的持续领先,全球折叠屏手机出货量在2024年第二季度同比增长了48%。 • 荣耀凭借其在西欧特别强劲的表现,成为最大的贡献者,成为该地区排名第一的品牌。 • 摩托罗拉的Razr 40系列在北美和拉丁美洲表现良好,为其手机厂商的出货量贡献了三位数的同比增长。 • 我们预计,头部中国手机品牌厂商的不断增加将至少在短期内抑制三星Z6系列在第三季度的发布。
AI技术的发展极大地推动了对先进封装技术的需求,在高密度,高速度,高带宽这“三高”方面提出了严苛的要求。
奕斯伟计算2024首届开发者伙伴大会以“绿色、开放、融合”为主题,从技术创新、产品应用、生态建设等方面,向开发者、行业伙伴等相关方发出开放合作倡议,加速RISC-V在各行各业的深度融合和应用落地,共同推动RISC-V新一代数字基础设施生态创新和产业发展。
2024年 Canalys 中国云计算渠道领导力矩阵冠军厂商分别是:阿里云、华为云和亚马逊云科技(AWS)
点击蓝字 关注我们德州仪器全球团队坚持克服挑战,为电源模块开发新的 MagPack™ 封装技术,这是一项将帮助推动电源设计未来的突破性技术。  ■ ■ ■作为一名经验丰富的马拉松运动员,Kenji K
‍‍Mobileye 将终止内部激光雷达开发Mobileye 宣布终止用于自动驾驶的激光雷达的开发,并裁员 100 人。Mobileye 认为,下一代 FMCW 激光雷达对可脱眼的自动驾驶来说必要性没
周二,捷普科技(Jabil)官员与印度泰米尔纳德邦代表团在泰米尔纳德邦首席部长MK Stalin的见证下,签署了一份备忘录。MK Stalin正在美国进行为期17天的访问,旨在吸引新的投资。MK St
‍‍近期,IC 设计大厂联发科宣布了2024年上半年度的员工分红计划,与8月份薪资一起发放。据外界估算,按照上半年税前盈余约648.66亿新台币(约 144.42 亿元人民币)进行估算,此次分红总额接
会议预告向世界展示中国最具创新力、领导力和品牌化的产品与技术!9月27号,“第6届国际移动机器人集成应用大会暨复合机器人峰会”将在上海举行,敬请关注!再度出现,能否再次“出线”?文|覃洁兰近日,曾经在
‍‍据龙芯中科介绍,近日,基于龙芯3A6000处理器的储迹NAS在南京师范大学附属小学丹凤街幼儿园、狮山路小学、南京大学附属中学等学校相继落地。储迹NAS是基于最新的龙芯CPU--3A6000,其代表
8月28-30日,PCIM Asia 2024展在深圳举行。“行家说”进行了为期2天的探馆,合计报道了200+碳化硅相关参展企业(.点这里.)。其中,“行家说”还重点采访了长飞先进等众多企业,深入了解
展位信息深圳跨境电商展览会(CCBEC)时间:2024年9月11-13日 9:30-17:30地点:深圳国际会展中心(宝安)展馆:16号馆 16D73/16D75 展位报名注册准备好“观众注册”入场二
在苹果和华为的新品发布会前夕,Counterpoint公布了2024年第一季度的操作系统详细数据,数据显示, 鸿蒙操作系统在2024年第一季度继续保持强劲增长态势,全球市场份额成功突破4%。在中国市场
近日,3个电驱动项目迎来最新进展,包括项目量产下线、投产、完成试验等,详情请看:[关注“行家说动力总成”,快速掌握产业最新动态]青山工业:大功率电驱项目下线9月5日,据“把动力传递到每一处”消息,重庆