绝大多数机电负载或半导体负载都需要稳定的 DC-DC 电压转换及严格的稳压,才能可靠运行。执行该功能的 DC-DC 转换器通常称作负载点 (PoL) 稳压器,设计时具有最大输入电压及最小输入电压规格,其规格定义了它们的稳定工作范围。这些稳压器的供电网络 (PDN) 的复杂性可能会因负载的数量和类型、整体系统架构、负载功率级、电压等级(转换级)以及隔离和稳压要求的不同而不同。

许多电源系统设计人员将稳压的 DC-DC 转换器视为整体设计的关键。但将合适的电压提供给负载点稳压器,不一定都需要 PDN 稳压,或者对于中间配电母线电压而言 PDN 稳压并不那么重要。考虑这一点时,电源系统工程师应该考虑应用固定比率 DC-DC 转换器,它可显著的提升PDN 的整体性能。

如何优化供电网络

PDN 性能通常以功耗、瞬态响应、物理尺寸、重量及成本来衡量。影响 PDN 性能的一个主要设计挑战是电压转化的比例和高精度的线/负载调整率。工程师花了大量的时间来处理大量不同的输入/输出 电压转化率,动态调整率以及分布特性来提高性能和可靠性。

如果系统负载功耗处于千瓦级范围内,采用高压设计大容量 PDN,可减少在系统中的电流等级 (P=V•I),因此可以缩小 PDN 尺寸,减轻重量并降低成本(线缆、母线排、主板铜箔电源层)(PLOSS = I2R)。在转换为低压/大电流前,最大限度延长高电压运行时长,尽可能接近负载,是一大优势。

但要让高压、高功率 PDN 接近负载,则需要具有高效率及高功率密度的 DC-DC 转换器。如果输入至输出电压转换比例很大,例如 800V 或 400V 转 48V,最高效率的转换器是提供非稳压的固定比率转换器。这些高效率的转换器,不仅可提供更高的功率密度,而且还因较低的功耗,可提供更便捷的热管理。

何为固定比率转换器?

固定比率转换器的工作原理与变压器类似,但它执行的不是 AC-AC 转换,而是 DC-DC 转换,输出电压为 DC 输入电压的固定比例。与变压器一样,这种转换器不提供输出电压稳压,输入至输出变压由器件的“匝数比”决定。该匝数比称为 K 因数,表示为一个相对于其电压降压能力的分数。K 因数从 K=1 到 K=1/72 不等,可根据 PDN 架构及 PoL 稳压器设计规范进行选择。

图A:双向固定比率转换器的工作原理。 K=1/16 的降压换器,也可用作 K=16/1 的升压转换器。

典型 PDN 电压有低电压 (LV)、高电压 (HV) 和超高电压 (UHV)。

固定比率转换器可以是隔离的,也可以不是隔离的,而且可通过反向电压转换实现双向功率流。例如,一款支持双向功能的 K=1/16 固定比率转换器可以作为一款 K=16/1 的升压转换器。

额外的设计灵活性包括易于并联(可满足更高功率的电源要求)和串联转换器输出的选项(可通过有效改变 K 因数,提供更高的输出电压)等。

图 B:BCM 转换器易于并联,满足更高的电源需求。

众多终端市场及应用的电源需求急剧上升,因此供电网络正在经历重大变革。由于新特性的增加以及性能水平的不断提升,更高的 PDN 电压(如 48V)正在用于电动汽车、轻型混合动力车以及插电式混合动力汽车。48V 符合许多系统要求的安全电气低电压 (SELV) 标准,而 P=V•I 和 PLOSS=I2R 的简单电源方程式也说明了高压 PDN 效率更高的原因所在。

图 C:输出串连以提高输出电压的 BCM 可实现更高的设计灵活性。

对于给定功率级而言,与 12V 系统相比,48V 系统电流为1/4、线路功耗低为1/16 。在 1/4 的电流下,线缆和连接器可以更小、更轻,而且成本也会更低。用于混合动力汽车的 48V 电池功率是 12V 电池的 4 倍,增加的电源可用于动力系统应用,以减少二氧化碳排放,提高燃油里程数并增加新的安全及娱乐特性。

在数据中心机架中增加了人工智能 (AI),使机架电源需求提高到了 20kW 以上,因此12V PDN的使用 既笨重,效率又低。使用 48V PDN,可获得与混合动力汽车相同的优势。在汽车及数据中心应用中,最好保留原有 12V 负载及 POL 常用降压稳压器,以最大限度减少需要修改的内容。

使用非隔离固定比率转换器解决实际问题

48V 符合 SELV 标准,因此非隔离固定比率转换器是 48V 至 12V DC-DC 转换级的理想之选,因为当前的 PoL 12V 稳压器能够应对输入电压的变化。非隔离、非稳压固定比率转换器是最高效的高功率母线转换器,可实现更低功耗、更高功率密度以及更低的成本。这一高密度有助于最新分布式配电架构用于混合动力汽车,其中非隔离固定比率转换器可布置在负载旁边,因此可在汽车周围最大限度运行更小、更高效的 48V PDN。在刀片服务器中,这种小型非隔离式 48V 至 12V 固定比率转换器可以布置在靠近降压稳压器的主板上。

许多全新 AI 加速卡(如 NVidia 的 SXM 以及开放式计算计划 (OCP) 成员的 OAM 卡)都设计有 48V 输入,因为 AI 处理器功率级在 500 至 750W 之间。要让依然在其机架中使用 12V PDN 背板的云计算及服务器公司使用这些高性能卡,就需要实现 12V 至 48V 的转换。在这些加速卡上(或在更高功率的分布式 12V 至 48V 模块中)增加一款双向 K=1/4 非隔离固定比率转换器,作为 12V 至 48V 升压转换器 (K = 4/1),可轻松将 AI 功能带入老式机架系统。

图 D:原有系统的 48V 电源

Vicor NBM2317 可将 48V 高效转换为 12V,也可将 12V 高效转换为 48V,因为 NBM 是一款双向转换器。双向性可将原有电路板整合在 48V 基础架构中,也可将最新 GPU 整合在原有 12V 机架中。

如何满足需要隔离功能而且要求苛刻的高电压应用需求

电动汽车

在电动汽车应用中,电源需求决定了电池电压必须远远高于目前混合动力汽车使用的 48V,通常选择 400V。400V 转换为 48V,配送给动力总成及底盘周围的不同负载。为支持快速充电,400V 电池由提供稳压 800V DC 输出的充电站通过 800V 至 400V 转换器充电。

图 E:分布式 48V 架构将多个功耗更低的更小转换器布置在接近 12V 负载的位置。

在 400V/48V 及 800V/400V 应用中,由于功率要求高,可有效地使用具有高功率密度、效率在 98% 以上的隔离式 K:1/8(400/48) 及 K:1/2 (800/400) 固定比率转换器并联阵列。稳压可在固定比率转换器级前面或者后面提供。未稳压的功率密度及效率提升,不仅在这一极高功率应用中的这个位置效果显著,而且还可简化热管理。

高性能计算

高性能计算 (HPC) 系统机架功率级通常高于 100kW,因此使用 380VDC 作为主要 PDN。在这些应用中,K:1/8 与 K:1/16 的隔离式固定比率转换器集成在服务器刀片中或通过机架配电的夹层卡上,为主板提供 48V 或 12V 电源。随后由 12V 多相降压转换器阵列或更高效率的高级 48V 至 POL 架构提供稳压。固定比率转换器的密度和效率又一次在实现这类 PDN 架构中发挥重要作用,可实现高性能。

系留无人机

另一项需要隔离的高电压应用就是系留无人机。系留无人机的电源线长度可能会超过 400 米,无人机必须将其提起并保持,才能达到其飞行高度。使用 800V 等高电压,可显著缩减这些笨重电源线的尺寸、重量和成本,从而可实现性能更高的无人机。使用板载固定比率转换器(一般 K=1/16)转换至 48V,可提供非常高效的极小供电解决方案,充分满足机载电子产品及视频有效载荷的需求。

图 F:电压越高,电线就越轻,系留无人机飞得就越高。

5G 通信

现在,全世界的都在提升4G 无线电和天线塔为之前 4G 设备5倍的最新 5G 系统。4G PDN 为 48V,通过线缆从地面电源系统提供。新增 5G 设备,功率级显著提升,如果 PDN 要保持在 48V 电压下,那直径就会非常大,电线就会很重。电信公司正在研究使用 380VDC PDN 的优势,以显著缩小线缆尺寸。在升压模式下使用双向 K 1/8 固定比率转换器,地面 48V 电源系统可向塔顶提供 380V 的电源(K:8/1)。4G 和 5G 系统在塔顶使用 380V 至 48V 稳压转换器,不仅可获得 48V 稳压电源,而且还可通过 380V 细小电线实现更低成本的供电。

固定比率转换器为高性能应用提供高度灵活的 PDN 设计

高性能电源需求在不断上升。企业及高性能计算高级系统、通信与网络基础设施、自动驾驶汽车以及大量交通运输应用只是需要更多电源的高增长产业中的几个。这些市场有一个共同的特点:每个市场都有极大的电力需求,它们都可从高功率密度的小型 DC-DC 转换器解决方案中获益,节省空间并减轻重量。电源系统工程师应当把固定比率转换器作为实现更高性能 PDN 的重要高灵活解决方案,以在整体系统性能方面获得竞争优势。

责编:Yvonne Geng

阅读全文,请先
您可能感兴趣
碳化硅(SiC)衬底已在电动汽车和一些工业应用中确立了自己的地位。然而,近来氮化镓(GaN)已成为许多重叠应用的有力选择。了解这两种衬底在大功率电路中的主要区别及其各自的制造考虑因素,或许能为这两种流行的复合半导体的未来带来启示。
对于大多数片上系统(SoC)设计而言,最关键的任务不是RTL编码,甚至不是创建芯片架构。如今,SoC主要是通过组装来自多个供应商的各种硅片知识产权(IP)模块来设计的。这使得管理硅片IP成为设计过程中的主要任务。
英特尔的嵌入式多裸片互连桥(EMIB)技术,旨在解决异构集成多芯片和多芯片(多芯粒)架构日益增长的复杂性,在今年的设计自动化大会(DAC)上掀起了波澜。它提供了先进的IC封装解决方案,包括规划、原型设计和签核,涵盖了2.5D和3D IC等广泛的集成技术。
一项技术要想产生广泛的影响,它不仅要解决短期的挑战,还应该超越现有技术的进步,为未来的创新打开大门。这就是我们对泛林集团(Lam Research)今年早些时候推出的全球首个用于半导体量产的脉冲激光沉积(PLD)技术的描述。
能量采集是低功耗电子设备供电技术发展的基本支柱,为实现对环境影响最小的可持续技术的未来铺平了道路。
许多人都听说过缓存一致性这个术语,但并不完全了解片上系统(SoC)器件,尤其是使用片上网络(NoC)的器件中的注意事项。要了解当前的问题,首先必须了解缓存在内存层次结构中的作用。
• 得益于西欧、关键亚洲市场和拉丁美洲市场的增长,以及中国品牌的持续领先,全球折叠屏手机出货量在2024年第二季度同比增长了48%。 • 荣耀凭借其在西欧特别强劲的表现,成为最大的贡献者,成为该地区排名第一的品牌。 • 摩托罗拉的Razr 40系列在北美和拉丁美洲表现良好,为其手机厂商的出货量贡献了三位数的同比增长。 • 我们预计,头部中国手机品牌厂商的不断增加将至少在短期内抑制三星Z6系列在第三季度的发布。
AI技术的发展极大地推动了对先进封装技术的需求,在高密度,高速度,高带宽这“三高”方面提出了严苛的要求。
奕斯伟计算2024首届开发者伙伴大会以“绿色、开放、融合”为主题,从技术创新、产品应用、生态建设等方面,向开发者、行业伙伴等相关方发出开放合作倡议,加速RISC-V在各行各业的深度融合和应用落地,共同推动RISC-V新一代数字基础设施生态创新和产业发展。
2024年 Canalys 中国云计算渠道领导力矩阵冠军厂商分别是:阿里云、华为云和亚马逊云科技(AWS)
点击蓝字 关注我们德州仪器全球团队坚持克服挑战,为电源模块开发新的 MagPack™ 封装技术,这是一项将帮助推动电源设计未来的突破性技术。  ■ ■ ■作为一名经验丰富的马拉松运动员,Kenji K
文|德福很多去成都旅游的朋友都有个疑惑——为什么在成都官方的城市标志上看不到熊猫,而是一个圆环?其实这个“圆环”大有来头,它被唤作太阳神鸟,2001年出土于大名鼎鼎的金沙遗址,距今已有三千余年历史。0
‍‍近期,IC 设计大厂联发科宣布了2024年上半年度的员工分红计划,与8月份薪资一起发放。据外界估算,按照上半年税前盈余约648.66亿新台币(约 144.42 亿元人民币)进行估算,此次分红总额接
天眼查信息显示,天津三星电子有限公司经营状态9月6日由存续变更为注销,注销原因是经营期限届满。该公司成立于1993年4月,法定代表人为YUN JONGCHUL(尹钟撤),注册资本约1.93亿美元,
近日,又一国产SiC企业宣布实现了主驱突破,并将出口海外。据“行家说三代半”的追踪统计,自2022年起,国内主驱级SiC器件/模块开始在多款车型中得到应用,尤其是2024年,本土供应商的市场份额显著上
8月28-30日,PCIM Asia 2024展在深圳举行。“行家说”进行了为期2天的探馆,合计报道了200+碳化硅相关参展企业(.点这里.)。其中,“行家说”还重点采访了骄成超声等十余家企业,深入了
8月28-30日,PCIM Asia 2024展在深圳举行。“行家说”进行了为期2天的探馆,合计报道了200+碳化硅相关参展企业(.点这里.)。其中,“行家说”还重点采访了长飞先进等众多企业,深入了解
在苹果和华为的新品发布会前夕,Counterpoint公布了2024年第一季度的操作系统详细数据,数据显示, 鸿蒙操作系统在2024年第一季度继续保持强劲增长态势,全球市场份额成功突破4%。在中国市场
近日,3个电驱动项目迎来最新进展,包括项目量产下线、投产、完成试验等,详情请看:[关注“行家说动力总成”,快速掌握产业最新动态]青山工业:大功率电驱项目下线9月5日,据“把动力传递到每一处”消息,重庆