“能量采集”(energy harvesting)让我们得以采集、保存以及使用电能,一直是备受关注的热门话题。这种结合了换能器、能量采集电路、电源管理IC、能量存储单元(电池或超级电容)以及无线链路的组合,全部都是以微小的功率在运作,也说明这种方法能够有效地建置自供电且长效的数据撷取、监测、记录与报告系统。
除了在其所标榜的许多(但并非全部)应用中极具实用性,能量采集还拥有让人“不劳而获”(something for nothing)的吸引力——其实这种说法有一点夸大其词。现实情况是,打造可行的能量采集解决方案需要大量且周详的计划、工作和组件。
当然,我们可以将它视为一项新的开发项目,现代的复杂设计都是如此。但是,能量采集的基本概念并不是什么新鲜事,一点也不是。(请注意,尽管风车和水涡轮已经存在数百年了,但本文并不论及这些非电力采集系统。)
当我们必须更换标准的天然瓦斯热水器时,更加清楚地了解这一点。当然,按照规定、法规和安全要求,必须要请水电工到家中安装瓦斯管和水管,这毕竟不是做到“差不多对”就可以被接受的情况。因此,我本来也打算请水电工来帮忙,但是当我检查热水器时才发现,它根本就没有外部的电气连接——不但没有交流电(AC)线路,也没有透过变压器的低压连接。它采用的是一个电动的电磁阀,根据开关的闭合来控制瓦斯流量。但是,如果电源没有连接到热水器,那么这个电磁阀究竟靠什么来供电?
答案很简单:尽管我们通常将热电偶视为温度传感换能器,但它长久以来也一直用于作为能量采集换能器和电源。在热水器中,热电偶就位于其常亮指示灯中,能够适时产生足够功率来满足气阀的需求,请参见图1。
图1:瓦斯热水器示意图显示底部的热电偶组装,其输出可启动或关闭瓦斯气阀。
(来源:All Trades Las Vegas)
这也是一种故障保护方法:如果指示灯熄灭或热电偶发生故障,电磁阀就无法通电,导致阀门持续关闭状态,而无法让瓦斯流通。其实,许多宇宙飞船中就采用了一种与此原理类似的能量产生技术来产生几百瓦功率,尽管其效率较低,但它利用周围的热电偶数组撷取钸元素放射衰变的热能。
当然,这种建置方式比起热电偶和热水器更新更复杂得多了,但其基本概念是相同的:采用热电偶作为能量采集的换能器,而非仅将其用于温度测量传感器。从更世俗的角度来看,您也可以用带有嵌入式热电偶数组的野炊炉具,其所产生的功率已足以启动小型气流产生风扇或为USB充电埠供电。
还有一种百年来让电子工程师爱不释手的能量采集设计:经典的晶体管收音机。这种晶体管收音机仅由天线、调谐线圈、二极管、电容器和头戴式耳机组成,无需使用电池即可撷取并解调AM广播。接收到的讯号本身提供了驱动头戴式耳机的功率,还有耳机必须是高阻抗的敏感设备。
对于任何想体验手作、打造令人赞叹的新手工程师来说,晶体管收音机一直是绝佳的设计项目;而且,还可以在网络上找到大量的原理图或参考资源,请参见图2。(当然,AM收音机如今已成“昨日黄花”,但 FM可是一点都没过时,但这不是本文的重点。晶体管收音机尽管存在局限,但其自供电接收机在早期广播电台盛行时曾经是一项了不起的创新。)
您还知道哪些能量采集应用不需要采用先进芯片?或甚至是在我们的芯片时代开始之前即已存在的能量采集应用?
图2:自供电的晶体管收音机采用解调的接收讯号(经由“封包检测器”来实现)功率,足以驱动高阻抗的头戴式耳机。
(来源:Dave’s Homemade Crystal Radio via Pinterest)
编译:Susan Hong 责编:Yvonne Geng
(参考原文:Energy Harvesting: Not as New as We Think,by Bill Schweber)