未来十年,人们对汽车电源和服务器电源的思考方式将发生变化。iPhone于2007年问世,这仅发生在12年前,而现在已没人能够想象生活中没有这台设备了。整个汽车行业在未来十年将发生相同的事情—人们将无法想象还开着燃油车的样子,而会看到向电动汽车和自动驾驶的重大转变。

无论是在充电基础设施DC-DC转换器,还是牵引逆变器中,碳化硅(SiC)将在这场变革中扮演核心角色。这也是UnitedSiC公司在7mΩ和9mΩ器件上投入研发的原因。

SiC技术的主要市场

UnitedSiC看好并专注于四个主要市场:汽车市场,我们可提供车载充电器、DC-DC转换器和牵引逆变器相关产品;工业市场,可提供电机驱动器、工业电池充电、快速充电系统;服务器电源市场,有功率因数校正和DC-DC转换设计;可再生能源市场,特别是提供太阳能逆变器。

还有一个有机会的市场,就是电路保护领域。我们的JFET技术在固态功率控制器和电路保护中也有非常大的用武之地。

共源共栅技术兼得SiC JFET和Si MOSFET的优势

功率器件设计最重要的是要做到易于使用。为此,不同于竞争对手,UnitedSiC采用共源共栅(cascode)技术,将SiC JFET与Si MOSFET集成在了一个封装中。

共源共栅技术的优点很多。首先,将低压硅MOSFET用作栅极接口,可以使用非常简单、标准的硅栅极驱动器。这样,用户就能够轻松替代硅超级结FET,而无需改变其电路。其次,其体二极管性能远优于SiC MOSFET,因为其中的高性能低压Si MOSFET具有非常低的反向恢复电荷(Qrr),并且其随温度的增加也很缓慢。再次,其阈值电压非常高,并且能够保证短路额定值。最后但最重要的是,其中的SiC JFET可同时提供高电压阻断能力和低导通电阻,这使我们可以以接近硅器件的价格提供650V碳化硅FET。

总而言之,用户可以兼得这两种材料系统的优势:从SiC JFET获得快速开关、高阻断能力和低RDS(on)性能;从硅MOSFET获得易用性和卓越的体二极管性能。

Chris Dries,UnitedSiC公司总裁兼CEO 

超低RDS(on)功率器件为汽车和服务器电源带来变革

SiC功率器件实现低RDS(on)或传导损耗,对电动汽车的牵引逆变器特别重要。例如,特斯拉Model 3中就采用了ST的SiC器件。预计到2020年下半年,首批采用UnitedSiC的9mΩ、1200V FET的电动汽车将在北京上路。

这得益于我们裸片尺寸的优势—针对1200V应用,我们的裸片尺寸大约是竞争对手的一半;针对650V应用,我们的裸片尺寸几乎比竞争对手小四倍。与竞争对手相比,我们能以任何给定封装提供具有超低RDS(on)的器件。

以任何封装形式提供具有超低RDS(on)器件的能力,不仅为汽车电源,还为服务器电源带来了变革。我们可以以非常小的表面贴装DFN 8mmx8mm封装提供30mΩ的碳化硅FET,而使服务器电源无需使用散热器,只需使用空气冷却即可。并且其易于组装,传导损耗低,可以实现3kW设计。事实上,这与650V GaN相比,具有极强的竞争优势。

但是,每种材料都有自己的用武之地。对于大多数市场而言,技术的使用取决于电压等级。显然,低压或中压应用将由硅主导。对于高性能的低压应用,GaN将扮演非常重要的角色。然而,一旦达到650V,硅和SiC将会并存—低成本设计使用硅,高性能设计使用SiC。针对650V应用,SiC与GaN的对比表明SiC更优,这与我们许多竞争对手所说的相反。而900V及以上的应用,则是SiC的主场。

另外,也有公司表示希望将SiC器件集成到手机充电器适配器中。使用SiC JFET可以为反激式电源适配器制造商提供更多功能。JFET器件的常通特性有助于控制器IC电路的快速启动,并为cascode形成高压开关,而其中的低压MOSFET可与控制器IC集成在一起,成为非常高频率、高效且具更高成本竞争力的GaN的替代品。

还有一点也很重要,就是硅的RDS(on)与SiC的RDS(on)非常不同。大多数厂商在数据手册上标注的是室温条件下的RDS(on),但是显然大多数人在使用这些器件时,温度是在100℃或125℃。我们发现,可以使用40mΩ SiC FET代替33mΩ硅FET—即使在工作温度较高时,RDS(on)也是相同的,并且开关性能卓越。

我们一直在创新和开发新器件,针对特定的额定电流进一步缩小裸片尺寸。过去很多用于缩小硅芯片尺寸的技术有待在SiC中实现,因此,我们的产品平台在未来十年的发展方向也很清晰。另外,封装技术的创新也很重要。随着我们裸片尺寸的缩小,散热会变得越来越难。在这方面,先进的封装技术就起到重要作用。另外,对于非常高频率的开关,集成式栅极驱动器和控制器IC是帮助减轻EMI问题的绝佳方法。

我们的目标是加速SiC技术的采用并发挥其更高效率和更高功率密度所带来的优势。我们通过独特的SiC技术来实现这一目标,并期待在几乎所有600V左右的电源转换应用中,我们的SiC器件和技术在未来数十年中发挥关键作用。

责编:Yvonne Geng

  • SiC Mosfet有哪些优点?
阅读全文,请先
您可能感兴趣
去年就完成了私有化的东芝,现如今在中国打算怎么发展半导体?进博会上,东芝是这么说的...
提升功率密度的需求给功率器件及其封装与冷却技术带来了特定的挑战。
紫光国芯微电子董事会分别收到公司董事长马道杰、副董事长谢文刚提交的书面辞职报告,因工作调整原因,马道杰申请辞去公司第八届董事会董事长、提名委员会委员职务……
英飞凌日前宣布其位于马来西亚的新晶圆厂一期项目正式启动运营,将重点生产碳化硅功率半导体,并涵盖氮化镓外延的生产。二期项目建成投产后,有望成为全球规模最大且最高效的200毫米碳化硅功率半导体晶圆厂。
为了满足对高效功率半导体日益增长的长期需求,近日,安世半导体宣布计划在德国汉堡市(Hamburg)投资 2 亿美元(约 1.84 亿欧元)研发碳化硅 (SiC) 和氮化镓 (GaN) 等下一代宽禁带半导体(WBG),并在汉堡工厂建立生产基础设施,同时,还将提高硅(Si)二极管和晶体管的晶圆厂产能。公告表示,从2024年6月起,安世半导体的SiC、GaN和Si这三种技术都将在德国开发和生产。
士兰微公布其《2023年年度报告》,士兰微在2023年的总营收比去年有所增长,但是净利润却大幅下滑。士兰微针对2023 年归属于母公司股东的净利润出现亏损的主要原因,与该公司持有的其他非流动金融资产中昱能科技、安路科技股票价格下跌有关,导致其公允价值变动产生税后净收益-45,227 万元。
目前,智能终端NFC功能的使用频率越来越高,面对新场景新需求,ITMA多家成员单位一起联合推动iTAP(智能无感接近式协议)标准化项目,预计25年上半年发布1.0标准,通过功能测试、兼容性测试,确保新技术产业应用。
中科院微电子所集成电路制造技术重点实验室刘明院士团队提出了一种基于记忆交叉阵列的符号知识表示解决方案,首次实验演示并验证了忆阻神经-模糊硬件系统在无监督、有监督和迁移学习任务中的应用……
C&K Switches EITS系列直角照明轻触开关提供表面贴装 PIP 端子和标准通孔配置,为电信、数据中心和专业音频/视频设备等广泛应用提供创新的多功能解决方案。
投身国产浪潮向上而行,英韧科技再获“中国芯”认可
今日,长飞先进武汉基地建设再次迎来新进展——项目首批设备搬入仪式于光谷科学岛成功举办,长飞先进总裁陈重国及公司主要领导、嘉宾共同出席见证。对于半导体行业而言,厂房建设一般主要分为四个阶段:设备选型、设
近期,多个储能电站项目上新。■ 乐山电力:募资2亿建200MWh储能电站12月17日晚,乐山电力(600644.SH)公告,以简易程序向特定对象发行A股股票申请已获上交所受理,募集资金总额为2亿元。发
对于华为来说,今年的重磅机型都已经发完了,而明年的机型已经在研发中,Pura 80就是期待很高的一款。有博主爆料称,华为Pura 80将会用上了豪威OV50K传感器,同时电池容量达到5600毫安时。至
有博主基于曝光的信息绘制了iPhone 17系列渲染图,对比iPhone 16系列,17系列最大变化是采用横置相机模组,背部DECO为条形跑道设计,神似谷歌Pixel 9系列,这是iPhone六年来的
来源:IT之家12 月 18 日消息,LG Display 韩国当地时间今日宣布,已将自行开发的“AI 生产系统”投入到 OLED 生产线的日常运行之中,该系统可提升 LG Display 的 OLE
阿里资产显示,随着深圳柔宇显示技术有限公司(下称:“柔宇显示”)旗下资产一拍以流拍告终,二拍将于12月24日开拍,起拍价为9.8亿元。拍卖标的包括位于深圳市龙岗区的12套不动产和一批设备类资产,其中不
又一地,新型储能机会来了?■ 印度:2032储能增长12倍,超60GW据印度国家银行SBI报告,印度准备大幅提升能源存储容量,预计到2032财年将增长12 倍,超60GW左右。这也将超过可再生能源本身
在科技浪潮翻涌的硅谷,马克·扎克伯格不仅是“脸书”帝国的掌舵人,更是以其谦逊低调的形象,在公众心中树立了独特的领袖风范。然而,在镁光灯难以触及的私人领域,扎克伯格与39岁华裔妻子普莉希拉·陈的爱情故事
 “ AWS 的收入增长应该会继续加速。 ”作者 | RichardSaintvilus编译 | 华尔街大事件亚马逊公司( NASDAQ:AMZN ) 在当前水平上还有 38% 的上涨空间。这主要得益
点击蓝字 关注我们电网和可再生能源系统向着更智能、更高效的方向发展助力优化能源分配构建更加绿色和可靠的能源未来12 月 24 日 上午 9:30 - 11:302024 德州仪器新能源基础设施技术直播