该成果所研发的基于多个忆阻器阵列的存算一体系统,在处理卷积神经网络(CNN)时的能效比图形处理器芯片(GPU)高两个数量级,大幅提升了计算设备的算力,成功实现了以更小的功耗和更低的硬件成本完成复杂的计算。

近日,清华大学微电子所、未来芯片技术高精尖创新中心钱鹤、吴华强教授团队与合作者在《自然》在线发表了题为“Fully hardware-implemented memristor convolutional neural network”的研究论文,报道了基于忆阻器阵列芯片卷积网络的完整硬件实现。该成果所研发的基于多个忆阻器阵列的存算一体系统,在处理卷积神经网络(CNN)时的能效比图形处理器芯片(GPU)高两个数量级,大幅提升了计算设备的算力,成功实现了以更小的功耗和更低的硬件成本完成复杂的计算。

多个忆阻器阵列芯片协同工作示意图。基于忆阻器阵列可以实现基于物理定律(欧姆定律和基尔霍夫定律)的并行计算,同时实现存储与计算一体化,突破“冯诺依曼瓶颈”对算力的限制。(图自:清华新闻网,下同)

基于忆阻器芯片的存算一体系统

随着人工智能应用对计算和存储需求的不断提升,集成电路芯片技术面临诸多新的挑战。一方面,随着摩尔定律放缓,通过集成电路工艺微缩的方式获得算力提升越来越难,另一方面,在传统“冯诺依曼”架构中,计算与存储在不同电路单元中完成,会造成大量数据搬运的功耗增加和额外延迟

阿里达摩院在2020年1月发布了《2020十大科技趋势》报告,其中第二大趋势为“计算存储一体化突破AI算力瓶颈”。报告指出:“数据存储单元和计算单元融合为一体,能显著减少数据搬运,极大提高计算并行度和能效。计算存储一体化在硬件架构方面的革新,将突破AI算力瓶颈”。基于忆阻器的新型存算一体架构可以利用欧姆定律和基尔霍夫电流定律的实现基于物理定律的原位计算(Compute on Physics),打破“冯诺依曼”架构中的算力瓶颈问题,满足人工智能等复杂任务对计算硬件的高需求。

什么是忆阻器?

忆阻器,全称记忆电阻器(Memristor),是继电阻、电容、电感之后的第四种电路基本元件,表示磁通与电荷之间的关系,最早由加州大学伯克利分校教授蔡少棠在1971年预言存在,惠普公司在2008年研制成功。

简单来说,这种组件的的电阻会随着通过的电流量而改变,而且就算电流停止了,它的电阻仍然会停留在之前的值,直到接受到反向的电流它才会被推回去,等于说能“记住”之前的电流量。

这种奇妙的效果,其实和神经元突触有相仿之处。再加上忆阻器还具有尺寸小、操作功耗低、可大规模集成(三维集成)等优点,难怪计算机科学家们在忆阻器身上看到了存算一体、低能耗类脑计算的前景。

人工神经网络近年来大放异彩,如果用忆阻器连接成阵列,作为人工神经网络的硬件,会有什么效果?

忆阻器阵列

当前国际上的相关研究还停留在简单网络结构的验证,或者基于少量器件数据进行的仿真,基于忆阻器阵列的完整硬件实现仍然有很多挑战:器件方面,制备高一致、可靠的多值忆阻器阵列仍是挑战;系统方面,受忆阻器的阻变机理制约,器件固有的非理想特性(如器件间波动,器件电导卡滞,电导状态漂移等)会导致计算准确率降低;架构方面,忆阻器阵列实现卷积功能需要以串行滑动的方式连续采样、计算多个输入块,无法匹配全连接结构的计算效率。

钱鹤、吴华强教授团队通过优化材料和器件结构,成功制备出了高性能的忆阻器阵列。2017年5月,该课题组就曾在《自然通讯》报告称,首次实现了基于1024个氧化物忆阻器阵列的类脑计算,将氧化物忆阻器的集成规模提高了一个数量级。这使芯片更加高效地完成人脸识别计算任务,将能耗降低到原来的千分之一以下。

忆阻器神经网络

为解决器件非理想特性造成的系统识别准确率下降问题,他们提出一种新型的混合训练算法,仅需用较少的图像样本训练神经网络,并通过微调最后一层网络的部分权重,使存算一体架构在手写数字集上的识别准确率达到96.19%,与软件的识别准确率相当。与此同时,提出了空间并行的机制,将相同卷积核编程到多组忆阻器阵列中,各组忆阻器阵列可并行处理不同的卷积输入块,提高并行度来加速卷积计算。

在此基础上,该团队搭建了全硬件构成的完整存算一体系统,在系统里集成了8个包括2048个忆阻器的阵列,以提高并行计算的效率,并在该系统上高效运行了卷积神经网络算法,成功验证了图像识别功能,证明了存算一体架构全硬件实现的可行性。

存算一体系统架构

近年来,钱鹤、吴华强教授团队长期致力于面向人工智能的存算一体技术研究,从器件性能优化、工艺集成、电路设计及架构与算法等多层次实现创新突破,先后在《自然通讯》(Nature Communications)、《自然电子》(Nature Electronics)、《先进材料》(Advanced Materials)等期刊以及国际电子器件会议 (IEDM)、国际固态半导体电路大会(ISSCC)等顶级学术会议上发表多篇论文。 

团队合影

清华大学微电子所吴华强教授是本论文的通讯作者,清华大学微电子所博士生姚鹏是第一作者。该研究工作得到了国家自然科学基金委、国家重点研发计划、北京市科委、北京信息科学与技术国家研究中心及华为技术有限公司等支持。

论文原文链接:

https://www.nature.com/articles/s41586-020-1942-4

责编:Luffy Liu

本文综合自清华新闻网、清华微电子所、Nature、澎湃新闻报道

您可能感兴趣
碳化硅技术正在彻底改变电力电子行业,使各种应用实现更高的效率、更紧凑的设计和更好的热性能。ST、安森美、Wolfspeed、罗姆和英飞凌等领先制造商均提供SiC解决方案,可根据特定用例提供分立器件、功率模块或裸片形式的产品。
日本罗姆半导体公司更换了其首席执行官(CEO),这一决定是由于公司面临财务困难和经济挑战。罗姆半导体预计在2024财年将出现60亿日元的净亏损,这是自2012年以来公司首次遭遇全年亏损......
Wolfspeed 决定将其位于得克萨斯州达拉斯郊外的工厂关闭,通过挂牌的方式将其出售,包含四栋建筑,包括一个 14MW 的数据中心设施,这四栋建筑均不可单独出售。关闭得克萨斯州工厂的原因主要是由于150毫米晶圆需求下降......
提升功率密度的需求给功率器件及其封装与冷却技术带来了特定的挑战。
金刚石以其优异的性能而闻名,长期以来一直有望应用于各种领域,但其作为半导体的潜力却一直面临着商业化的障碍。Advent Diamond公司在解决关键技术难题方面取得了长足进步,特别是制造出了掺磷的单晶金刚石,从而形成了n型层。
为保证数据中心的稳定性和高效能,需要大量高功率输入电源以支持多个运算系统同时运行。在这种复杂的环境下,用户需要确保总电源与子系统之间建立有效的过流保护隔离,以防止局部故障影响整个系统的正常运作。
TEL宣布自2025年3月1日起,现任TEL中国区地区总部——东电电子(上海)有限公司高级执行副总经理赤池昌二正式升任为集团副总裁,同时兼任东电电子(上海)有限公司总裁和东电光电半导体设备(昆山)有限公司总裁。
预计在2025年,以下七大关键趋势将塑造物联网的格局。
领域新成果领域新成果4月必逛电子展!AI、人形机器人、低空飞行、汽车、新能源、半导体六大热门新赛道,来NEPCON China 2025一展全看,速登记!
本次股东大会将采取线上和线下相结合的混合形式召开,股东们可选择现场出席或线上参会。
Mar. 5, 2025 产业洞察根据TrendForce集邦咨询最新研究,TSMC(台积电)近日宣布提高在美国的先进半导体制造投资,总金额达1650亿美元,若新增的三座厂区扩产进度顺利,预计最快20
2月17日,“南京江宁开发区”发文透露,阳光电源在南京新建的光伏储能项目已经全面开工建设,总投资达到10亿元。加入光储充交流群,请加微信:hangjiashuo888据报道,阳光电源南京研发中心项目是
从上表可知,2024年前三季度全球40强PCB企业总营收约416.7亿美元,同比增长7.6%。其中,营收排名第一位的是臻鼎科技(36.05亿美元),排名第2~5位的分别是欣兴电子(26.85亿美元)、
UN低耗LED照明驱动电源IC U6116值得一选LED驱动电源在LED整灯成本中占比不小,在市场竞争激烈的当下,整灯企业希望能够降低LED驱动电源的成本,同时LED驱动电源的品质和性价比也成为主要焦
本文来源:智能通信定位圈自动跟随类的产品属于比较酷炫功能的“黑科技”产品。要实现自动跟随的技术可以有很多,但是最常用的就是UWB,因为UWB定位精度高,现在的成本也在下降,手机中也开始逐渐普及UWB等
先问大家一个问题:你有多久没看电视了?对老局来说,最近这几年除了春晚和国庆阅兵,其他情况下,基本已经不会看电视了。当然了,连着PS5打游戏那是另外一回事。不过,虽然我们不怎么看电视了,但电视的市场却并
在数字化飞速发展的当下,海量数据不断涌现。传统云计算模式下,数据传输到远程云端处理,产生延迟、带宽压力,难以满足实时性和隐私需求。为应对挑战,边缘计算应运而生,将部分计算任务下沉到网络边缘,降低延迟、
点击蓝字 关注我们SUBSCRIBE to USImage: SwitchBotSwitchBot价格实惠、可调节的智能窗帘终于问世了。SwitchBot窗帘(SwitchBot Roller Sha
  合景智慧建设 (广东)有限公司子品牌合洁科技电子净化工程公司(以下简称“合洁科技”)作为洁净工程领域的领军企业,凭借其卓越的技术实力、创新的设计理念和高效的施工能力,在多个行业