该成果所研发的基于多个忆阻器阵列的存算一体系统,在处理卷积神经网络(CNN)时的能效比图形处理器芯片(GPU)高两个数量级,大幅提升了计算设备的算力,成功实现了以更小的功耗和更低的硬件成本完成复杂的计算。

近日,清华大学微电子所、未来芯片技术高精尖创新中心钱鹤、吴华强教授团队与合作者在《自然》在线发表了题为“Fully hardware-implemented memristor convolutional neural network”的研究论文,报道了基于忆阻器阵列芯片卷积网络的完整硬件实现。该成果所研发的基于多个忆阻器阵列的存算一体系统,在处理卷积神经网络(CNN)时的能效比图形处理器芯片(GPU)高两个数量级,大幅提升了计算设备的算力,成功实现了以更小的功耗和更低的硬件成本完成复杂的计算。

多个忆阻器阵列芯片协同工作示意图。基于忆阻器阵列可以实现基于物理定律(欧姆定律和基尔霍夫定律)的并行计算,同时实现存储与计算一体化,突破“冯诺依曼瓶颈”对算力的限制。(图自:清华新闻网,下同)

基于忆阻器芯片的存算一体系统

随着人工智能应用对计算和存储需求的不断提升,集成电路芯片技术面临诸多新的挑战。一方面,随着摩尔定律放缓,通过集成电路工艺微缩的方式获得算力提升越来越难,另一方面,在传统“冯诺依曼”架构中,计算与存储在不同电路单元中完成,会造成大量数据搬运的功耗增加和额外延迟

阿里达摩院在2020年1月发布了《2020十大科技趋势》报告,其中第二大趋势为“计算存储一体化突破AI算力瓶颈”。报告指出:“数据存储单元和计算单元融合为一体,能显著减少数据搬运,极大提高计算并行度和能效。计算存储一体化在硬件架构方面的革新,将突破AI算力瓶颈”。基于忆阻器的新型存算一体架构可以利用欧姆定律和基尔霍夫电流定律的实现基于物理定律的原位计算(Compute on Physics),打破“冯诺依曼”架构中的算力瓶颈问题,满足人工智能等复杂任务对计算硬件的高需求。

什么是忆阻器?

忆阻器,全称记忆电阻器(Memristor),是继电阻、电容、电感之后的第四种电路基本元件,表示磁通与电荷之间的关系,最早由加州大学伯克利分校教授蔡少棠在1971年预言存在,惠普公司在2008年研制成功。

简单来说,这种组件的的电阻会随着通过的电流量而改变,而且就算电流停止了,它的电阻仍然会停留在之前的值,直到接受到反向的电流它才会被推回去,等于说能“记住”之前的电流量。

这种奇妙的效果,其实和神经元突触有相仿之处。再加上忆阻器还具有尺寸小、操作功耗低、可大规模集成(三维集成)等优点,难怪计算机科学家们在忆阻器身上看到了存算一体、低能耗类脑计算的前景。

人工神经网络近年来大放异彩,如果用忆阻器连接成阵列,作为人工神经网络的硬件,会有什么效果?

忆阻器阵列

当前国际上的相关研究还停留在简单网络结构的验证,或者基于少量器件数据进行的仿真,基于忆阻器阵列的完整硬件实现仍然有很多挑战:器件方面,制备高一致、可靠的多值忆阻器阵列仍是挑战;系统方面,受忆阻器的阻变机理制约,器件固有的非理想特性(如器件间波动,器件电导卡滞,电导状态漂移等)会导致计算准确率降低;架构方面,忆阻器阵列实现卷积功能需要以串行滑动的方式连续采样、计算多个输入块,无法匹配全连接结构的计算效率。

钱鹤、吴华强教授团队通过优化材料和器件结构,成功制备出了高性能的忆阻器阵列。2017年5月,该课题组就曾在《自然通讯》报告称,首次实现了基于1024个氧化物忆阻器阵列的类脑计算,将氧化物忆阻器的集成规模提高了一个数量级。这使芯片更加高效地完成人脸识别计算任务,将能耗降低到原来的千分之一以下。

忆阻器神经网络

为解决器件非理想特性造成的系统识别准确率下降问题,他们提出一种新型的混合训练算法,仅需用较少的图像样本训练神经网络,并通过微调最后一层网络的部分权重,使存算一体架构在手写数字集上的识别准确率达到96.19%,与软件的识别准确率相当。与此同时,提出了空间并行的机制,将相同卷积核编程到多组忆阻器阵列中,各组忆阻器阵列可并行处理不同的卷积输入块,提高并行度来加速卷积计算。

在此基础上,该团队搭建了全硬件构成的完整存算一体系统,在系统里集成了8个包括2048个忆阻器的阵列,以提高并行计算的效率,并在该系统上高效运行了卷积神经网络算法,成功验证了图像识别功能,证明了存算一体架构全硬件实现的可行性。

存算一体系统架构

近年来,钱鹤、吴华强教授团队长期致力于面向人工智能的存算一体技术研究,从器件性能优化、工艺集成、电路设计及架构与算法等多层次实现创新突破,先后在《自然通讯》(Nature Communications)、《自然电子》(Nature Electronics)、《先进材料》(Advanced Materials)等期刊以及国际电子器件会议 (IEDM)、国际固态半导体电路大会(ISSCC)等顶级学术会议上发表多篇论文。 

团队合影

清华大学微电子所吴华强教授是本论文的通讯作者,清华大学微电子所博士生姚鹏是第一作者。该研究工作得到了国家自然科学基金委、国家重点研发计划、北京市科委、北京信息科学与技术国家研究中心及华为技术有限公司等支持。

论文原文链接:

https://www.nature.com/articles/s41586-020-1942-4

责编:Luffy Liu

本文综合自清华新闻网、清华微电子所、Nature、澎湃新闻报道

阅读全文,请先
您可能感兴趣
提升功率密度的需求给功率器件及其封装与冷却技术带来了特定的挑战。
金刚石以其优异的性能而闻名,长期以来一直有望应用于各种领域,但其作为半导体的潜力却一直面临着商业化的障碍。Advent Diamond公司在解决关键技术难题方面取得了长足进步,特别是制造出了掺磷的单晶金刚石,从而形成了n型层。
为保证数据中心的稳定性和高效能,需要大量高功率输入电源以支持多个运算系统同时运行。在这种复杂的环境下,用户需要确保总电源与子系统之间建立有效的过流保护隔离,以防止局部故障影响整个系统的正常运作。
碳化硅电力电子器件对电动汽车生态系统影响巨大。
在分立GaN HEMT器件的广泛可用性之外,领先的GaN制造商还提出了集成GaN解决方案,这些集成解决方案在GaN的固有优势的基础上,有可能提供更好的性能。
本文想要分享一个为维修和测量脉冲转换器而制作的设计。
目前,智能终端NFC功能的使用频率越来越高,面对新场景新需求,ITMA多家成员单位一起联合推动iTAP(智能无感接近式协议)标准化项目,预计25年上半年发布1.0标准,通过功能测试、兼容性测试,确保新技术产业应用。
中科院微电子所集成电路制造技术重点实验室刘明院士团队提出了一种基于记忆交叉阵列的符号知识表示解决方案,首次实验演示并验证了忆阻神经-模糊硬件系统在无监督、有监督和迁移学习任务中的应用……
C&K Switches EITS系列直角照明轻触开关提供表面贴装 PIP 端子和标准通孔配置,为电信、数据中心和专业音频/视频设备等广泛应用提供创新的多功能解决方案。
投身国产浪潮向上而行,英韧科技再获“中国芯”认可
来源:观察者网12月18日消息,自12月2日美国发布新一轮对华芯片出口禁令以来,不断有知情人士向外媒透露拜登政府在卸任前将采取的下一步动作。美国《纽约时报》12月16日报道称,根据知情人士以及该报查阅
投资界传奇人物沃伦·巴菲特,一位94岁的亿万富翁,最近公开了他的遗嘱。其中透露了一个惊人的决定:他计划将自己99.5%的巨额财富捐赠给慈善机构,而只将0.5%留给自己的子女。这引起了大众对于巴菲特家庭
万物互联的时代浪潮中,以OLED为代表的新型显示技术,已成为人机交互、智能联结的重要端口。维信诺作为中国OLED赛道的先行者和引领者,凭借自主创新,实现了我国OLED技术的自立自强,成为中国新型显示产
有博主基于曝光的信息绘制了iPhone 17系列渲染图,对比iPhone 16系列,17系列最大变化是采用横置相机模组,背部DECO为条形跑道设计,神似谷歌Pixel 9系列,这是iPhone六年来的
来源:IT之家12 月 18 日消息,LG Display 韩国当地时间今日宣布,已将自行开发的“AI 生产系统”投入到 OLED 生产线的日常运行之中,该系统可提升 LG Display 的 OLE
12月18 日,据报道,JNTC与印度Welspun BAPL就车载盖板玻璃的开发及量产签订了投资引进业务合作备忘录(MOU)。资料显示,JNTC是韩国的一家盖板玻璃厂商。Welspun的总部位于印度
“ 洞悉AI,未来触手可及。”整理 | 美股研究社在这个快速变化的时代,人工智能技术正以前所未有的速度发展,带来了广泛的机会。《AI日报》致力于挖掘和分析最新的AI概念股公司和市场趋势,为您提供深度的
阿里资产显示,随着深圳柔宇显示技术有限公司(下称:“柔宇显示”)旗下资产一拍以流拍告终,二拍将于12月24日开拍,起拍价为9.8亿元。拍卖标的包括位于深圳市龙岗区的12套不动产和一批设备类资产,其中不
又一地,新型储能机会来了?■ 印度:2032储能增长12倍,超60GW据印度国家银行SBI报告,印度准备大幅提升能源存储容量,预计到2032财年将增长12 倍,超60GW左右。这也将超过可再生能源本身
亲爱的企业用户和开发者朋友们距离2024 RT-Thread开发者大会正式开幕仅剩最后3天!还没报名的小伙伴,抓紧报名噢,12月21日不见不散!大会时间与地点时间:2024年12月21日 9:30-1