随着汽车成为大众消费品进入千家万户,无论是传统车辆还是新能源PHEV,车辆的长期安全可靠性成为衡量汽车品质的一个重要指标。而保证汽车安全可靠,除了在汽车电子元器件的车规级的认证选型上需要关注之外,对于汽车电子功能模块的保护也越来越重要。

随着汽车成为大众消费品进入千家万户,无论是传统车辆还是新能源PHEV,车辆的长期安全可靠性成为衡量汽车品质的一个重要指标。而保证汽车安全可靠,除了在汽车电子元器件的车规级的认证选型上需要关注之外,对于汽车电子功能模块的保护也越来越重要。

在汽车电子功能模块保护上,除了静电保护(ISO10605)之外,最重要的要算道路行驶车辆的电气瞬变干扰的保护,也就是我们通常提到的汽车电子的测试标准ISO 7637-2 及增强版ISO 16750-2的标准了。

首先,先了解一下这两个标准定义的脉冲

在汽车电子系统所有脉冲中,抛负载是常见而且也是危害比较大的一种现象。那么ISO 7637-2 与ISO16750-2对于抛负载测试有什么差异?

ISO16750-2 相比ISO7637-2更为严格。在抛负载测试时,新的标准要求10分钟做10次测试,没两次测试间隔1分钟。而老的标准仅仅需要做一次抛负载测试。

在大多数新型交流发电机中,抛负载的电压幅度已经通过安装瞬态电压抑制二极管(TVS)而得到抑制(钳位)。

针对抛负载保护,最有效的方式就是选用瞬态抑制二极管(TVS)进行钳位保护。

在讨论5a,5b的保护之前,我们先看看这两种脉冲能量是否有差异。

ISO 7637-2 Pulse 5a-12V TPSMC27A 抛负载(load dump)测试

ISO 7637-2 Pulse 5b-12V TPSMC27A 抛负载(load dump)测试

上面的测试结果可以分析出,从抛负载发生器(或者发动机)端,其实5a,5b波形能量大小是没有差异的。当待测TVS动作,串相同负载条件下,TVS上流过的电流是一样的,TVS钳位电压也是一样的。

但是从抛负载电压波形上来讲,5b相对5a    波形是有钳位(或稳压),导致负载端承受的电压远低于5a的波形。

因此,如果在做5a,5b抛负载保护时,若是从被保护器件防止被抛负载能量损坏的角度看,其保护器件的选型应是一致的。

然而在实际应用中,通常抛负载产生时,希望TVS动作,将能量导通泄放倒地,那么5a,5b不同的波形下,保护器件TVS实际承受的能量就会有很大的差异。因为只有当TVS导通以后,才会有大电流流过TVS,因此在不同的抛负载测试波形下,TVS实际承受的能量就有了不同。

在TVS选型之前,先了解两种模式下的实验电压:

不同实验模式下,对TVS的选型也会有差异。

接下来,我们只针对Mode 3  12V系统进行讨论。在模式3条件下,测试电压最大到16V,因此,TVS的Vr(反向截止电压)通常需要高于16V.        

对于 ISO16750-2 12V系统 pulse 5a  Us=101V, R1=1Ω, td=400ms    

选择TVS SLD8S24A,那么TVS是否能满足5a测试

TVS导通后承受的电流:    

Ipp=[(Us+Ua)-Vbr]/(R1+Rd)   

Vbr:TVS 反向击穿电压

Vc:TVS钳位电压

Rd:TVS 导通时阻抗-----可以通过平移 TVS V/I 曲线纵坐标到Vbr,会得出一次函数曲线,Rd=(Vc-Vbr)/Ipp

                                                                                                                                                                                  

查Littelfuse SLD8S24A规格书,计算Rd=(38.9V-26.7V)/180A=0.07Ω

计算TVS导通后流过的电流Ipp=【(101V+12V)-Vbr】/(1Ω+0.07Ω)=(112V-26.7V)/1.07Ω=79.7A@400ms

计算TVS上通过的能量(波形近正弦波,可以套用1/2 x I²t x Rd)W=1/2 x (79.7A)² x td x Rd=1/2*6352.09A² x 400ms * 0.07Ω=88.9J(实际导通时间低于td 400ms)

计算TVS所能承受的最大能量,查规格书知道8.3ms对应Ifsm是1000A

 TVS 能量Wtvs=(Ifsm)² x t x Rf=(1000A)² x 8.3ms x 0.018Ω=149.4J

Rf:TVS 正向导通阻抗,可以通过Vf/100A=1.8V/100A=0.018Ω

100A是规格书定义的测试Vf时的电流

对比可以知道,SLD8S24A能满足pulse 5a 测试

通过SOA测试验证,SLD8S24A可以满足要求

除了TVS在汽车电子中常用于脉冲保护之外,MOV也是常见的保护器件。

以Littelfuse满足AEC-Q200的AUMOV选型为例,在12V系统ISO16750-1 5a,Us=101V,Ua=12V;R1=1.5Ω(设定),td=400ms

1: AUMOV导通后承受的电流:   

Ipp=[(Us+Ua)-Vnom]/(R1+Rd)    

Vnom:AUMOV的压敏电压@1mA

Vc:AUMOV钳位电压

Rd:AUMOV 导通时电压钳位在Vc时阻抗-----可以通过查AUMOV规格书,以V10E17AUTO 为例;Vc=53V@Ipk=5A

Rd=(Vc-Vnom)/Ipp                                                                                                                              

查规格书,计算Rd=(53V-27V)/5A=5.2Ω

计算导通后流过的电流Ipp=【(101V+12V)-Vnom】/(1.5Ω+5.2Ω)=(112V-27V)/6.7Ω≈12.7A@400ms

计算AUMOV上通过的能量(套用1/2  x I²t x Rd)W=1/2 x (12.7A)² x td  x Rd=1/2 x 187.69A² x 400ms x 5.2Ω≈167.7J(实际导通时间低于td 400ms)

如果把5a流过AUMOV上的能量折算成40ms宽度脉冲,计算电流大小

½ x I² x 40ms x (R1+ 0.9Ω)=167.7J;   I²=3493.75A²;  I≈59.1A 

计算V10E17AUTO所能承受的最大能量@400ms

1:查规格书知道2ms(方波)对应Wtm=6.5J---Wtm表示MOV所能承受的最大的2ms焦耳能量值

计算AUMOV在承受最大Wtm时的导通阻抗Rtm;

查规格书曲线2ms时对应的最大电流60A;

Wtm=I² x  t x Rtm;   Rtm=Wtm/ (I² x t);   Rtm= 6.5J/(60A² x 2ms)=0.9Ω

2:查规格书可知40ms宽度的Load dump 能量25J;

计算V10E17AUTO 的load dump 电流  25J=1/2 x I² x 40ms x Rtm ;    I²=50J/(0.04s x  0.9Ω) ;    I²=13.88 X10²A²;    I≈37.3A

在相同load dump 宽度下,可知MOV导通需要承受的5a电流59.1A远高于V10E17AUTO规格书标称load dump 电流37.3A

那么如果换成AUMOV V20E17AUTO型号,是否能满足呢?

计算V20E17AUTO所能承受的最大能量@400ms

1:查规格书知道2ms(方波)对应Wtm=35J---Wtm表示MOV所能承受的最大的2ms焦耳能量值

计算V20E17AUTO在承受最大Wtm时的导通阻抗Rtm;

查规格书曲线2ms时对应的最大电流300A;

Wtm=I² x t x Rtm;    Rtm=Wtm/ (I² x t);   Rtm= 35J/(300A² x 2ms)≈0.19Ω

2: 查规格书可知40ms宽度的Load dump 能量100J;

计算V20E17AUTO 的 load dump 电流  100J=1/2 x I² x 40ms x Rtm ;    I²=200J/(0.04s x  0.19Ω) ;    I²≈2.63 X104A²;    I≈162A

在相同 “抛负载“ 宽度下,可知V20E17AUTO导通需要承受的5a电流59.1A远低于V20E17AUTO规格书标称”抛负载” 电流162A

通过实验,可以看到V20E17AUTO能满足10次Load Dump测试:

 

作者:李晓辉 Steven Li,Littelfuse FAE

责编:Amy  Guan

  • 真棒
阅读全文,请先
您可能感兴趣
碳化硅(SiC)衬底已在电动汽车和一些工业应用中确立了自己的地位。然而,近来氮化镓(GaN)已成为许多重叠应用的有力选择。了解这两种衬底在大功率电路中的主要区别及其各自的制造考虑因素,或许能为这两种流行的复合半导体的未来带来启示。
对于大多数片上系统(SoC)设计而言,最关键的任务不是RTL编码,甚至不是创建芯片架构。如今,SoC主要是通过组装来自多个供应商的各种硅片知识产权(IP)模块来设计的。这使得管理硅片IP成为设计过程中的主要任务。
英特尔的嵌入式多裸片互连桥(EMIB)技术,旨在解决异构集成多芯片和多芯片(多芯粒)架构日益增长的复杂性,在今年的设计自动化大会(DAC)上掀起了波澜。它提供了先进的IC封装解决方案,包括规划、原型设计和签核,涵盖了2.5D和3D IC等广泛的集成技术。
一项技术要想产生广泛的影响,它不仅要解决短期的挑战,还应该超越现有技术的进步,为未来的创新打开大门。这就是我们对泛林集团(Lam Research)今年早些时候推出的全球首个用于半导体量产的脉冲激光沉积(PLD)技术的描述。
能量采集是低功耗电子设备供电技术发展的基本支柱,为实现对环境影响最小的可持续技术的未来铺平了道路。
许多人都听说过缓存一致性这个术语,但并不完全了解片上系统(SoC)器件,尤其是使用片上网络(NoC)的器件中的注意事项。要了解当前的问题,首先必须了解缓存在内存层次结构中的作用。
• 得益于西欧、关键亚洲市场和拉丁美洲市场的增长,以及中国品牌的持续领先,全球折叠屏手机出货量在2024年第二季度同比增长了48%。 • 荣耀凭借其在西欧特别强劲的表现,成为最大的贡献者,成为该地区排名第一的品牌。 • 摩托罗拉的Razr 40系列在北美和拉丁美洲表现良好,为其手机厂商的出货量贡献了三位数的同比增长。 • 我们预计,头部中国手机品牌厂商的不断增加将至少在短期内抑制三星Z6系列在第三季度的发布。
AI技术的发展极大地推动了对先进封装技术的需求,在高密度,高速度,高带宽这“三高”方面提出了严苛的要求。
奕斯伟计算2024首届开发者伙伴大会以“绿色、开放、融合”为主题,从技术创新、产品应用、生态建设等方面,向开发者、行业伙伴等相关方发出开放合作倡议,加速RISC-V在各行各业的深度融合和应用落地,共同推动RISC-V新一代数字基础设施生态创新和产业发展。
2024年 Canalys 中国云计算渠道领导力矩阵冠军厂商分别是:阿里云、华为云和亚马逊云科技(AWS)
点击蓝字 关注我们德州仪器全球团队坚持克服挑战,为电源模块开发新的 MagPack™ 封装技术,这是一项将帮助推动电源设计未来的突破性技术。  ■ ■ ■作为一名经验丰富的马拉松运动员,Kenji K
‍‍Mobileye 将终止内部激光雷达开发Mobileye 宣布终止用于自动驾驶的激光雷达的开发,并裁员 100 人。Mobileye 认为,下一代 FMCW 激光雷达对可脱眼的自动驾驶来说必要性没
‍‍近期,IC 设计大厂联发科宣布了2024年上半年度的员工分红计划,与8月份薪资一起发放。据外界估算,按照上半年税前盈余约648.66亿新台币(约 144.42 亿元人民币)进行估算,此次分红总额接
近日A股上市公司陆续完成2024年上半年业绩披露,其中24家SiC概念股上半年合计营收同比增长14.58%至1148.65亿元,研发费用同步增长7.22%至69.16亿元。尤为值得注意的是,天岳先进、
[关注“行家说动力总成”,快速掌握产业最新动态]9月6日,据“内江新区”消息,晶益通(四川)半导体科技有限公司旗下IGBT模块材料和封测模组产业园项目已完成建设总进度的40%,预计在明年5月建成。据了
8月28-30日,PCIM Asia 2024展在深圳举行。“行家说”进行了为期2天的探馆,合计报道了200+碳化硅相关参展企业(.点这里.)。其中,“行家说”还重点采访了骄成超声等十余家企业,深入了
展位信息深圳跨境电商展览会(CCBEC)时间:2024年9月11-13日 9:30-17:30地点:深圳国际会展中心(宝安)展馆:16号馆 16D73/16D75 展位报名注册准备好“观众注册”入场二
在苹果和华为的新品发布会前夕,Counterpoint公布了2024年第一季度的操作系统详细数据,数据显示, 鸿蒙操作系统在2024年第一季度继续保持强劲增长态势,全球市场份额成功突破4%。在中国市场
9月6日,“智进AI•网易数智创新企业大会”在秦皇岛正式举行,300+企业高管及代表、数字化技术专家齐聚一堂,探讨当AI从技术探索迈入实际应用,如何成为推动组织无限进化的新引擎。爱分析创始人兼CEO金