通常,BOM上的无源元件数量是IC数量的五倍或更多倍。虽然它们中有许多是无关紧要的,但是又有许多非常重要。此外,随着工作频率常常达到GHz和数GHz范围,它们的第二级和第三级特性以及一致性变得更加重要。

最近,我读了一篇技术文章,让我感到害怕——这种事情很少发生。这与草率或匆忙设计无关,甚至与软件bug无关——这样的bug直到为时已晚,发生了非常糟糕的事情,才会显现。取而代之的是关于“寻常、无聊”的多层贴片电容器(MLCC)——电容器中一种广泛使用的子类别——以及在指定它们时可能出现的一些问题,以及与获得性能一致性有关的问题。

我们知道无源元件在大多数设计中都没有引起太多关注,但事实是,在模拟设计和物料清单(BOM)的模拟部分当中,包含很多这类元件:电阻器、电容器、电感器、LED和光电传感器,而变压器则是当中最常见的元件。通常,BOM上的无源元件数量是IC数量的五倍或更多倍。虽然它们中有许多是无关紧要的,例如未端接输出上标称的10kΩ上拉电阻,但是无论是显而易见还是非常少见,它们中有许多又非常重要。此外,随着工作频率常常达到GHz和数GHz范围,它们的第二级和第三级特性以及一致性变得更加重要。

Medical Design Briefs网站上发表的文章“The ‘Relativity’ of High Q Capacitors”部分谈及了无量纲品质因数Q。这篇文章着眼于对该参数值有影响的电容器设计和生产问题——该参数通常被认为是个第二级因素(电容、公差和工作电压通常被认为是第一级因素)。正如该文第一段所述那样:“对于许多大功率射频应用,嵌入式电容器的‘Q因数’是电路设计中最重要的特性之一。”

其中包括诸如蜂窝/电信设备、MRI线圈、等离子发生器、激光器,以及其他医疗、军事和工业电子产品之类的产品。”它讨论了供应商在高频下表征Q值时的不同合理方法(不是简单的设置或测试),在测试设置中多小的误差会引起定量结果中较大的误差,以及所主张价值的合理变化。其他第二级参数包括串联谐振频率(SRF)和并联谐振频率(PRF),电容器设计和测量的安装方式是水平还是垂直(图1和图2),等等。

图1:电极与基板表面平行时MLCC的插入损耗。(图片来源:Johanson Technology)

图2:相同电容器容值条件下,电极与基板表面垂直安装时的插入损耗。(图片来源:Johanson Technology)

在我充分掌握了MLCC的知识后,当此文谈及多少细微的批次间变化(包括相同型号器件的层数,甚至来自单个供应商)会改变这些所谓“相同”的电容器的“值”时,情况变得更加让我恐惧。而如果是从其他供应商处购买零件的话,情况则会更糟。因此,即使我们努力设计并指定最大容许的Q和ESR,实际得到的结果也可能大不相同。也许更糟,批次之间的差异可能很大,这会对生产、测试和性能一致性产生巨大影响。

出现这种问题的不仅仅是电容器。我一直认为具有讽刺意味的是——或是现实世界给了我一次令人蒙羞的教训——理想变压器最初的特征不过是一种简单的、众所周知的电压与匝数的关系(Vprimary/Vsecondary = Turnsprimary/Turnssecondary),但是情况很快就变得复杂了。一旦开始考虑损耗、自热、边缘效应、温度系数以及对导线电阻、磁性能和绕组布置的影响等等问题时,设计就变得非常棘手。再加上制造变化和公差等现实问题的话,就会得出简单的想法:变压器是一个非常复杂的元件,并且随着频率提高到MHz和更高的范围,它就变得更具挑战性。

当然,如果使用通用的多维建模和仿真工具,同时考虑电气、机械、材料和散热等关联因素(例如COMSOL),或者使用针对某种元件优化过的单一用途利基工具,那么就可大大减轻元件设计和设计导入(design-in)问题。尽管如此,尤其是在更大的功率水平下,很多变压器的设计仍然依赖于直觉、经验和动手知识,以及每个供应商的“秘密配方”。

好消息是,从高度分析性的学术论文到供应商和工程师的实用见解,再到供应商甚至是经验丰富的业余爱好者的动手“操作方法”资料,我们可以找到许多良好的无源元件信息源。

您是否曾因这些第二级和第三级参数、它们的规格或它们值的变化和改变等相关问题而感到意外(或被“缠住”)呢? 

(原文刊登于ASPENCORE旗下Planet Analog网站,参考链接:Do You Really Know Your Passives?

本文为《电子技术设计》2019年12月刊杂志文章,版权所有,禁止转载。免费杂志订阅申请点击这里

阅读全文,请先
您可能感兴趣
SiC的特定特性要求对MOSFET器件和栅极驱动电路进行仔细选择,以确保安全地满足应用需求,并尽可能提高效率。在本文中,我们将讨论为SiC MOSFET选择栅极驱动器时应考虑的标准。
由于在满足所有要求方面存在不同的权衡,因此很难采用一种适用于所有情况的电流检测方法。
宽禁带半导体(例如SiC和GaN)在可靠性、能效、功率密度和降低成本方面具有重要优势。
ITSA报告对当前的V2X应用进行了分析,并对两个关键的V2X部分进行了展望——使用5.9GHz频谱的直连V2X和使用4G LTE和5G蜂窝通信的网联V2X。此外,该报告还对未来在5.9GHz当前30MHz带宽限制之外的扩展进行了展望。
提升功率密度的需求给功率器件及其封装与冷却技术带来了特定的挑战。
在电气设计过程中,需要做出某些设计选择。其中一个例子是使用跨接式连接器的USB C型连接器设计。在这种情况下,使用跨接式连接器时,PCB的整体厚度受到限制,因为跨接式连接器的厚度决定了整体厚度。
目前,智能终端NFC功能的使用频率越来越高,面对新场景新需求,ITMA多家成员单位一起联合推动iTAP(智能无感接近式协议)标准化项目,预计25年上半年发布1.0标准,通过功能测试、兼容性测试,确保新技术产业应用。
中科院微电子所集成电路制造技术重点实验室刘明院士团队提出了一种基于记忆交叉阵列的符号知识表示解决方案,首次实验演示并验证了忆阻神经-模糊硬件系统在无监督、有监督和迁移学习任务中的应用……
C&K Switches EITS系列直角照明轻触开关提供表面贴装 PIP 端子和标准通孔配置,为电信、数据中心和专业音频/视频设备等广泛应用提供创新的多功能解决方案。
投身国产浪潮向上而行,英韧科技再获“中国芯”认可
今日,长飞先进武汉基地建设再次迎来新进展——项目首批设备搬入仪式于光谷科学岛成功举办,长飞先进总裁陈重国及公司主要领导、嘉宾共同出席见证。对于半导体行业而言,厂房建设一般主要分为四个阶段:设备选型、设
近期,多个储能电站项目上新。■ 乐山电力:募资2亿建200MWh储能电站12月17日晚,乐山电力(600644.SH)公告,以简易程序向特定对象发行A股股票申请已获上交所受理,募集资金总额为2亿元。发
‍‍12月18日,深圳雷曼光电科技股份有限公司(下称“雷曼光电”)与成都辰显光电有限公司(下称“辰显光电”)在成都正式签署战略合作协议。双方将充分发挥各自在技术创新、产品研发等方面的优势,共同推进Mi
有博主基于曝光的信息绘制了iPhone 17系列渲染图,对比iPhone 16系列,17系列最大变化是采用横置相机模组,背部DECO为条形跑道设计,神似谷歌Pixel 9系列,这是iPhone六年来的
12月18 日,据报道,JNTC与印度Welspun BAPL就车载盖板玻璃的开发及量产签订了投资引进业务合作备忘录(MOU)。资料显示,JNTC是韩国的一家盖板玻璃厂商。Welspun的总部位于印度
阿里资产显示,随着深圳柔宇显示技术有限公司(下称:“柔宇显示”)旗下资产一拍以流拍告终,二拍将于12月24日开拍,起拍价为9.8亿元。拍卖标的包括位于深圳市龙岗区的12套不动产和一批设备类资产,其中不
 “ AWS 的收入增长应该会继续加速。 ”作者 | RichardSaintvilus编译 | 华尔街大事件亚马逊公司( NASDAQ:AMZN ) 在当前水平上还有 38% 的上涨空间。这主要得益
今天上午,联发科宣布新一代天玑芯片即将震撼登场,新品会在12月23日15点正式发布。据悉,这场发布会联发科将推出全新的天玑8400处理器,这颗芯片基于台积电4nm制程打造,采用Arm Cortex A
极越汽车闪崩,留下一地鸡毛,苦的是供应商和车主。很多人都在关心,下一个倒下的新能源汽车品牌,会是谁?我们都没有未卜先知的超能力,但可以借助数据管中窥豹。近日,有媒体统计了15家造车新势力的销量、盈亏情
亲爱的企业用户和开发者朋友们距离2024 RT-Thread开发者大会正式开幕仅剩最后3天!还没报名的小伙伴,抓紧报名噢,12月21日不见不散!大会时间与地点时间:2024年12月21日 9:30-1