在AI加速器世界,芯片的性能通常是以既定算法的TOPS (tera operations per second)来表示,但有很多理由显示,这或许并不是最好的参考数字。如美国的AI加速器开发商Flex Logix执行长Geoff Tate所言:“客户真正要的是每1美元的高处理量(throughput)。”
Tate解释,TOPS数字越高并不一定就有更高的处理量,尤其是在样本大小(batch size)为1的边缘应用中;而诸如数据中心等应用,可透过以较大的样本平行处理多个输入来提高处理量(因为就会有多余的TOPS),但这通常并不适合边缘设备。
举例来说,Tate比较了Flex Logix的InferX X1组件以及市场上的某款领导级GPU,虽然后者的处理量是3~4倍,TOPS是10倍,但需要用到8倍的DRAM;相较之下Flex Logix的组件架构能节省很多资源。
Flex Logix的InfereX X1预计2019年底投片,将提供8.5TOPS左右的算力。
(来源:Flex Logix)
但Tate提出的每1美元处理量指标听起来很合理,实际上也不是都能很容易找到可靠的组件产品价格,以直接进行比较。而像是需要多少DRAM或是某款特定芯片有多大的占位面积能显示成本,但并不精确。
另一个把TOPS当作指标会遇到的问题,是通常会以执行ResNet-50模型来进行测量。“ResNet-50并不是客户关心的测量基准,只是人们最常用的;”Tate解释:“这个模型不是非常重要的原因是,它使用非常小的影像。”
ResNet-50被使用了一段时间而且成为比较TOPS数据的既定标准,但现在被认为已经过时。虽然有很多继续使用这个标准的好理由,包括至少需要让所有接下来的分数能继续进行比较,还有这是所有类型设备(甚至是微小设备)都能使用的标准,但它不足以挑战现今为数据中心推理打造的巨大芯片,也不能充分显示它们的性能。
除了既定标准,当然也有不同的产业组织为AI加速器芯片开发出测量基准,例如MLPerf、DawnBench、EEMBC…等等。而尽管其中MLPerf已经公布了一批推理芯片的跑分结果,但Tate认为这个测量基准太“数据中心导向”。
他举例指出,在单数据流(single-stream)情境中,考虑边缘设备一次处理一个影像(样本数为1),性能指针为90百分位数(90th percentile)延迟;“在边缘,我不认为客户会想知道90百分位数,他们要知道百分之百:你能给我什么保证?”例如自动驾驶就是一个非常重视延迟表现的边缘应用。
像是对象侦测等复杂图像处理任务的表现性能,会更适合用来比较现在的高端AI加速器。
(来源:Flex Logix)
对于那些在信息于处理器核心与内存之间传递时会遭遇总线竞争(bus contention)的系统,长尾延迟(long tail latencies)是一个典型的问题。虽然目前有很多设备都使用了高带宽内存接口,但因为竞争可能发生,仍然会有一个理论上的尾延迟。
Flex Logix以FPGA为基础的推理处理器设计,号称每一次都有差不多的延迟时间(另一家AI加速器业者Groq也声称他们有同样的性能,但坚称其组件并非FPGA)。
Tate指出:“因为我们在核心中使用共同创办人发明的FPGA互连,有一个内存到乘法累加器(multiply accumulators)、再到触发逻辑并回到内存的专属路径,因此没有竞争问题;”信息流通顺畅,利用率没有到100%,但超越其他所有架构。
而尽管市场竞争激烈,AI加速器新秀如雨后春笋,Tate对于Flex Logix的前景信心十足;“当真正的芯片问世、开始执行软件并且展示,你也看到价格与性能…很快,市场上没办法跑到前四分之一的公司就消失不见。”
Tate预测,未来AI加速器领域只会有10~15家芯片公司的生存空间,以不同的市场(包括训练、推理、数据中心、边缘与超低功耗…等等)为基础;那些在市场上的解决方案在运算性能上跨越很大的数量级,因此不会全部都是直接彼此竞争。
他认为,未来一到两年就会有大量的公司被淘汰,套用一句投资之神巴菲特(Warren Buffett)的名言:“当潮水退去,你就会看到是谁在裸泳。”
编译:Judith Cheng 责编:Yvonne Geng
(参考原文: AI Accelerators: TOPS is Not the Whole Story,by Sally Ward-Foxton)