要实现自主,机器人不仅仅只需要人工智能(AI),还需要很多传感器、传感器融合以及边缘实时推理。由于深度卷积神经网络的优点已得到公认,激光雷达对更为先进的数据处理的需求正在把神经网络推向新的拓扑结构,以实现自主。

第一个机器人在20世纪50年代末、60年代初诞生,但严格意义上它不算机器人,只是一台“可编程的物品传送设备”,它被用于移动通用汽车公司生产线上压铸机周围的产品。1954年专利的第一句话强调了本发明的可编程性和通用性,并且表明可编程性要求传感器确保程序、期望轨迹或功能和实际运动之间的一致性。

时至今日,机器人并没有完全偏离最初的概念:如今的机器人是可以进行编程的。它们需要感知自身的环境,以确保所做的事情和被设定要做的事情是一致的。而且,它们需要在自身的环境中移动。过去50-60年来所发生的变化主要是在复杂性、速度以及应用这些基本概念的领域方面有所增加。

虽然第一批机器人主要用来移动压铸件,但机器人之父约瑟夫·恩格尔伯格(Joseph Engelberger)深受阿西莫夫机器人第一定律的影响——机器人不得伤害人类,或看到人类受到伤害而袖手旁观。他把机器人部署在可以保护人类的地方。保护人类也是传感器数量不断增加的驱动力,特别是在协作机器人(cobots)或自动导引车(AGVs)中。

是什么推动着机器人产业的发展?

为了更好地理解对自主机器人的追求,让我们回顾一下Alex Wissner-Gross的“智能定律”方程式:它是一种熵力,解释了机器人学的发展趋势:
F = T ∇ Sτ (1)

其中F指的是使未来行动自由最大化的力,T指的是定义整体强度的温度(可用资源),以及S指的是时间范围tau内的熵。

机器人学作为一门工业和科学,其目标是通过增加嵌入式模拟智能来最大限度地提高未来机器人行动的自由度。这就需要:

• 有更多的传感器来获得更高精度的机器人周围环境模型。
• 有更好的传感器连接到控制算法(和更分散的控制算法)。
• 有更好的算法从传感器数据中提取尽可能多的信息。
• 有更好的执行器来根据控制算法的决策更快更准确地行动。

不妨看一看当今的科技领域,机器人已经获得了很大的自主性,并且正在使用来自互补性氧化金属半导体相机传感器、激光雷达和雷达的传感器来适应各种各样的应用。虽然相机的角度分辨率和动态范围比雷达大得多,但相机不能提供激光雷达所具有的动态范围,也不能在烟雾弥漫或多尘的环境中工作。

图1:工厂环境中的现代机械臂示例。

由于机器人被设计成适应最广泛应用的最灵活的选择,因而它们需要在低光、多尘或明亮的环境中工作。这种灵活性可以通过组合传感器信息——aka、传感器融合来实现。换句话说,不同传感器的信息可用于重建机器人环境的弹性表示,从而在更多应用中实现自主性。例如,如果一个相机被暂时覆盖,则其他传感器必须能够使机器人安全运行。为确保机器人能对其所处环境有全方位的了解,机器人传感器数据需要以限时的方式进行路由,并用少量的电缆连接到机器人控制器,以最大限度地提高连接的可靠性。

如今,高带宽低延迟总线主要基于低压差分信号(LVDS)。然而, LVDS接口并没有标准,这就导致传感器到控制器的生态系统出现分裂,并且使来自不同供应商的混合和匹配解决方案变得困难。一旦传感器数据被传输到机器人控制器,一系列基于深度神经网络的机器学习算法可以帮助提高机器人所处环境的精度。用深度学习教父Yann LeCun、Yoshua Bengio和Geoffrey Hinton的话说,“深度学习允许由多个处理层组成的计算模型学习具有多个抽象层的数据表示。”这些深度神经网络可以在机器人内部用于快速、实时处理,也可以在云中用于元信息收集或更复杂的推理。
20191216-201.jpg
图2:机器人的不同感应能力。

对于大多数机器人来说,得益于边缘处理所允许的固有低延迟,边缘推理是确保机器人能够对其环境的变化做出快速反应的重要参数。边缘推理可用于卷积神经网络,类似的神经网络拓扑结构可用于图像分类或预防性维护估算,深度Q网络可用于机器人路径规划,或用于为解决一类特定问题而设计的自定义神经网络。

展望未来

在未来,传感器似乎不太可能有太大的变化,但所涉及的处理将有所不同。成像传感器可能变成高光谱或可提供更高的分辨率。激光雷达可能有更高的波长、更安全、并具有更长的范围。雷达传感器可能配备集成天线,但这些并不会有显著变化。未来将改变的是信息使用和聚合的方式。

例如,在传感器集线器上,引入单对以太网(aka T1)和数据线供电(电气和电子工程师学会802.3bu-2016)将简化传感器集线器接口的设计,从而使更传感器组合更广泛和实现标准化配电。在控制方面,强化学习将由于最近的突破而得到加强,从而解决了诸如从所有可能的失败中学到的高成本,以及由于学习模式的偏斜而学习错误行为的惩罚等难题。

在归类方面,大多数基于卷积神经网络的方法并没有从激光雷达提供的体素中完全提取出所有的3D信息。下一代深度神经网络将利用框架提供的非欧几里德机器学习(或几何机器学习)中的最新进展,如PointNet、ShapeNet、Splatnet和Voxnet等框架。边缘推理和传感器融合将融合到我所看到的多个传感器源的层次推理中。在这里,数据将通过更简单的推理网络做出更快的回路反应,例如电流控制神经网络,以改善现有比例-积分-微分网络的性能,一直到能够提供预测性维护诊断并处于中间位置的更加复杂的长期-短期记忆网络。神经网络将能够补偿机器人结构的微小误差,并提供更高的位置精度和更平滑的运动。

总结

自主机器人进化是一个始终变化的目标。当乔治·德沃尔(George Devol)在1954年申请专利时,此机器显然比当时任何基于凸轮或人工操作的机器都更自主。但按照今天的标准,这将是一个非常僵化的设置,甚至不会出现在自主程度的排名上。这种剧烈的变化很可能在我们意识到之前再次发生。

现在人们认为,轮式机器人和协作机器人正处于自主的边缘,当人类靠近它们时,它们会减速,甚至在移动时也能避免撞到人类。随着嵌入式模拟智能技术的迅速变化,这些“处于边缘”的创新型机器人在不久的将来不会被视为具有自主性,因为这个行业正在以如此之快的速度发展并不断产生新技术,从而使得机器人技术比以往任何时候都更加自主。

责编:Yvonne Geng

阅读全文,请先
您可能感兴趣
碳化硅(SiC)衬底已在电动汽车和一些工业应用中确立了自己的地位。然而,近来氮化镓(GaN)已成为许多重叠应用的有力选择。了解这两种衬底在大功率电路中的主要区别及其各自的制造考虑因素,或许能为这两种流行的复合半导体的未来带来启示。
对于大多数片上系统(SoC)设计而言,最关键的任务不是RTL编码,甚至不是创建芯片架构。如今,SoC主要是通过组装来自多个供应商的各种硅片知识产权(IP)模块来设计的。这使得管理硅片IP成为设计过程中的主要任务。
英特尔的嵌入式多裸片互连桥(EMIB)技术,旨在解决异构集成多芯片和多芯片(多芯粒)架构日益增长的复杂性,在今年的设计自动化大会(DAC)上掀起了波澜。它提供了先进的IC封装解决方案,包括规划、原型设计和签核,涵盖了2.5D和3D IC等广泛的集成技术。
一项技术要想产生广泛的影响,它不仅要解决短期的挑战,还应该超越现有技术的进步,为未来的创新打开大门。这就是我们对泛林集团(Lam Research)今年早些时候推出的全球首个用于半导体量产的脉冲激光沉积(PLD)技术的描述。
能量采集是低功耗电子设备供电技术发展的基本支柱,为实现对环境影响最小的可持续技术的未来铺平了道路。
许多人都听说过缓存一致性这个术语,但并不完全了解片上系统(SoC)器件,尤其是使用片上网络(NoC)的器件中的注意事项。要了解当前的问题,首先必须了解缓存在内存层次结构中的作用。
• 得益于西欧、关键亚洲市场和拉丁美洲市场的增长,以及中国品牌的持续领先,全球折叠屏手机出货量在2024年第二季度同比增长了48%。 • 荣耀凭借其在西欧特别强劲的表现,成为最大的贡献者,成为该地区排名第一的品牌。 • 摩托罗拉的Razr 40系列在北美和拉丁美洲表现良好,为其手机厂商的出货量贡献了三位数的同比增长。 • 我们预计,头部中国手机品牌厂商的不断增加将至少在短期内抑制三星Z6系列在第三季度的发布。
AI技术的发展极大地推动了对先进封装技术的需求,在高密度,高速度,高带宽这“三高”方面提出了严苛的要求。
奕斯伟计算2024首届开发者伙伴大会以“绿色、开放、融合”为主题,从技术创新、产品应用、生态建设等方面,向开发者、行业伙伴等相关方发出开放合作倡议,加速RISC-V在各行各业的深度融合和应用落地,共同推动RISC-V新一代数字基础设施生态创新和产业发展。
2024年 Canalys 中国云计算渠道领导力矩阵冠军厂商分别是:阿里云、华为云和亚马逊云科技(AWS)
文|沪上阿YI路特斯如今处在一个什么样的地位?吉利控股集团高级副总裁、路特斯集团首席执行官冯擎峰一直有着清晰的认知:“这个品牌的挑战依然非常大。首先,整个中国市场豪华汽车整体数据下滑了30%~40%,
‍‍近期,IC 设计大厂联发科宣布了2024年上半年度的员工分红计划,与8月份薪资一起发放。据外界估算,按照上半年税前盈余约648.66亿新台币(约 144.42 亿元人民币)进行估算,此次分红总额接
据市场调查机构Allied Market Research的《单晶硅晶圆市场》报告指出,2022年单晶硅晶圆市场价值为109亿美元,预计到2032年将达到201亿美元,2023年~2032年的复合年均
在德国柏林举行的IFA 2024上,AMD计算和图形业务集团高级副总裁兼总经理Jack Huynh宣布,公司将把以消费者为中心的RDNA和以数据中心为中心CDNA架构统一为UDNA架构,这将为公司更有
会议预告向世界展示中国最具创新力、领导力和品牌化的产品与技术!9月27号,“第6届国际移动机器人集成应用大会暨复合机器人峰会”将在上海举行,敬请关注!逐个击破现有痛难点。文|新战略半导体行业高标准、灵
近日,又一国产SiC企业宣布实现了主驱突破,并将出口海外。据“行家说三代半”的追踪统计,自2022年起,国内主驱级SiC器件/模块开始在多款车型中得到应用,尤其是2024年,本土供应商的市场份额显著上
[关注“行家说动力总成”,快速掌握产业最新动态]9月6日,据“内江新区”消息,晶益通(四川)半导体科技有限公司旗下IGBT模块材料和封测模组产业园项目已完成建设总进度的40%,预计在明年5月建成。据了
在苹果和华为的新品发布会前夕,Counterpoint公布了2024年第一季度的操作系统详细数据,数据显示, 鸿蒙操作系统在2024年第一季度继续保持强劲增长态势,全球市场份额成功突破4%。在中国市场
随着汽车智能化升级进入深水区,车载ECU(域)以及软件复杂度呈现指数级上升趋势。尤其是多域、跨域和未来的中央电子架构的普及,以及5G/V2X等车云通信的增强,如何保障整车的信息与网络安全,以及防范外部
近日,3个电驱动项目迎来最新进展,包括项目量产下线、投产、完成试验等,详情请看:[关注“行家说动力总成”,快速掌握产业最新动态]青山工业:大功率电驱项目下线9月5日,据“把动力传递到每一处”消息,重庆