本月月初,Imagination Technologies在上海进行了一次宣称是“15年来最重要的GPU IP发布”。这次发布的GPU IP新品名为A-Series,没有沿用早前以数字为系列代号的传统,而且似乎还弱化了PowerVR在产品名中的存在。

为什么“性能暴涨”?

那么达成这种性能暴涨的原因是什么?Imagination PowerVR产品管理和技术营销高级总监Kristof Beets在接受我们采访时,首先提到的就是“完全重构的ALU(算术逻辑单元),我们对其进行了大量精简,现在其内部就是相当简单、干净的MAD管线(MAD是指乘法累加单元)”,执行单元从过去的2个MAD单元,变为现在的1个MAD(而且还抛弃了Furian架构中的MUL乘法单元),也就是说每个时钟周期单条管线的执行能力实际是下降的——这也是ALU拓宽的重要前提。

20191206-imagination-7.jpg

A-Series在架构上也因此有了“128条ALU管线同时并行”,也就是128-wide ALU。128线程宽度是什么概念呢?早前的Rogue架构采用的是32线程宽度wavefront(wavefront是GPU代码的最小可执行单元,SIMD过程中数据处理的最小单元,在所有线程中同时执行同一指令,Nvidia称其为warp),不过单个SIMD仅支持16-wide;Furian架构则真正加宽到了32-wide,即单个时钟周期执行32-wide wavefront。

作为对比,Arm Mali G77的SIMD宽度是16-wide,这还是相较G76的一倍拓宽。所以A-Series单就ALU结构来看,显然是独占鳌头的。这也表明Imagination真正开始从指令级并行彻底转往线程级并行(TLP),实现ALU的更高利用率。这么做理论上能够极大提升性能密度。Beets补充说由于管线精简,“compiler也大幅简化了,它只需要在管线中找乘法累加实现100%运算即可,架构中也更容易实现高利用率,是设计中实现性能密度和能效提升的重要组成部分。”

不过有这么宽的ALU,如何改进整个架构的前端,去喂饱这么宽的执行单元就成为一个问题了。前端调度效率低的话,这么宽的ALU管线只会出现大量闲置,以及效率的下降。

针对这部分,Beets在演讲着重介绍了data master(数据管理)——各种不同的data master将工作负载分配到GPU中去,比如有Geometry Data Master负责几何数据管理;还有2D Data Master、3D Data Master,以及Compute Data Master(负责通用型计算数据管理)。这些不同的data master基于内存的命令队列中读取数据,驱动任务负载进入GPU。

20191206-imagination-8.jpg

比如3D Data Master,还执行一些其他的固定功能预处理,包括HSR(隐面消除,是GPU的核心技术之一)、针对shader的工作负载生成。随后进入到“Triangle Task Merging”(三角形合并)——Beets表示这是一个关键模块;PDS(Programmable Data Sequencer,可编程数据定序器)再对资源进行分配管理,为工作负载和管理任务预留寄存器空间——这个组件能够针对未来的线程从cache中预取数据。

接下来是指令scheduler(调度器)和decoder(解码器),分发解码后才正式进入到执行单元。然后就是128-wide的ALU了,这里值得一提的是,在主ALU管线之外还有一个副ALU线路方案(Secondary ALU),如上图所示。这部分管线仅有主ALU管线1/4的宽度,每周期并行执行32个线程,不过有一些更为复杂的指令,执行任务包括各种操作与迭代、数据转换、超越指令等。Beets表示,在更低的速率上工作,是基于对真实应用场景各种工作负载所做的权衡。“针对ALU结构,我们分析了大量应用,去理解其中的平衡点,实现最高的效率。”

弹性化扩展

以上是对单个ALU簇的大致理解,也是A-Series获得性能暴涨的主要原因。我们往更高层级看一看其架构变化。在多年前的Rogue架构分享中,Imagination曾有一度将每个USC(Unified Shading Cluster)算作一个核心。到A-Series看来,大概已经不能这么算了,因为其性能扩展方式比较“模块化”。

前文谈到的这样一个主体128-wide ALU管线实际就是一个USC。这样一个USC,加上周边的固定功能单元,比如TPU(纹理处理单元)、HSR(隐面消除)、各种针对不同数据的管线(如针对几何数据处理、光栅处理、混合处理等),以及可实现更高层级共享的cache,也就共同组成了一个真正意义上的“核心”,只不过这个核心比较大型。下面这张图就是一个完整的核心,在A-Series的弹性架构中构成真正的、完整的一个IP方案。

20191206-imagination-9.jpg

在AXM 8-256方案中,这样的一个GPU“核心”内部有一个ALU簇(即一个USC),一个TPU纹理处理单元,以及其他专用单元。而在更高配置的AXT 16-512产品中,一个“核心”则包含了两个128-wide的ALU簇(达成每个时钟周期512次浮点运算),两个TPU(达成每个时钟周期采样16个双线性过滤texel)。

作为对比,Mali G77标称每个时钟周期 64 FLOPs、2 texels,也就是说一个AXM 8-256核心就相当于8个Mali G77核心的性能水平。这其实也表明了Mali仍在走GPU的小核心、多核心路线,而Imagination在走宽核心路线。

20191206-imagination-10.jpg

而如果是性能更高的AXT 32-1024,就是将这样一个GPU核心“复制”一份,实现性能翻番;那么达到最高配的AXT 64-2048实际上就是四个这样的核心。与此同时,针对各种单元的调度和监控,有一个小型的固件处理器(firmware processor),这一点将在后文中进一步提及。

Beets说这样的弹性架构,可以方便地选择性能提升,或者通过减少并行管线、纹理单元的方式,实现符合自身应用所需的配置。

20191206-imagination-11.jpg

尤为值得一提的是,他特别列举了各种操作类型在流经GPU时的全套逻辑。比如上面这张图就是几何图形处理过程(geometry processing flow)的例子,绿色模块表示的是需要处理这些数据和操作所涉及的模块,箭头则表示整个流程方向:GPU获取到内存中的命令结构,Geometry Data Master首先检查内存中的命令队列,获取命令并将工作负载推到GPU内部;随后读取几何图形,各种各样的三角形就会填充到cache中,再进入几何图形管线(geometry pipeline),之后流经ALU,返回的结果还需要进入到Tiling Engine(因为Imagination的GPU IP是典型的Tile-based Rendering基于块渲染的架构),将这些三角形转换至应用于屏幕不同的tile区域,最终输出到内存。

20191206-imagination-12.jpg

不同类型的操作,整个流程及涉及的模块会有差别,比如像素处理对应3D Data Master,后续要做隐面消除、计算像素渲染等;还有比如一些内部操作(housekeeping operations)、2D操作等等。上图是像素处理流程(Pixel Processing Flow),以紫色示意。

全栈并发的HyperLane技术

以上提到的这些各类别操作,可以通过一种名为“HyperLane”的技术做硬件级并行,这也是Imagination这次随同A-Series GPU IP发布的一种技术。这种技术对内存做完全隔离,多任务同时提交给GPU,实现GPU的多任务执行,或者说GPU硬件的“全栈并发”。典型的比如说图形计算和AI计算同时进行。

20191206-imagination-13.jpg

实际针对前文提到的各种不同类型的操作,HyperLane可将GPU的所有任务负载切分成(subdivide)几份,这其中不仅包括了物理层面的隔离切分(模块层面的并发),还包括按照时间切分做负载资源切换。不同的Data Master可以同时保持活跃状态,在整个GPU硬件资源之间进行动态的工作执行,每个时钟周期不同的模块可以执行不同的任务,ALU可以做Compute操作、像素操作、几何图形操作、2D操作等。

20191206-imagination-14.jpg
多种颜色表示HyperLane激活的多种操作正在同时进行

另外,HyperLane还有优先级机制,Evans说:“比如有客户希望,在同时执行任务的时候,确保图形计算性能不会受到AI工作负载的影响,那么就可以调高图形计算优先级,即便芯片正在处理复杂的AI任务,图形性能也能被保护起来。”这部分操作需要借用到这次IP架构中的固件处理器(即前文提到的firmware processor)。

HyperLane技术包含了动态的8路切分(eight way split/multi-tasking),也就是至多8条hyperlane。“所有工作同时进行,在硬件层面完整隔离和实现虚拟化,硬件级别的高级调度机制实现灵活性。”

HyperLane的一个副产品是内容保护,每条hyperlane都是隔离的,彼此之间的内容就能实现隔离。Evans说:“比如有个流视频应用,带DRM,那么内容在整个GPU中都是完全隔离起来的,在多任务环境中受到保护。”这也算是种安全防护方案了。

20191206-imagination-15.jpg
Imagination PowerVR产品管理和技术营销高级总监Kristof Beets

本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
阅读全文,请先
您可能感兴趣
硬件若无软件支持就毫无意义。而软件始终是Arm计算平台不可或缺的一部分,其技术已经涵盖整个软件栈的各个层面。从底层固件和操作系统的开发,到与游戏引擎、开源社区和独立软件供应商(ISV)的战略合作,确保所有这些在Arm平台上都能“开机即用”。
汪洋特别提到,第十三届芯原CEO论坛五大预测之一是2028年用于端侧微调卡和推理卡的销售额将超过用于云侧的训练卡。目前,推理和端侧微调也是芯原重点关注的领域,同时也希望在这一发展趋势中寻找新的机遇。 
随着对复杂IC的需求不断增长,供应商面临着越来越大的压力,需要在尽可能短的时间内交付最高质量的IC。本文阐述了测试工程在交付定制IC以满足这一需求方面的重要性。
为了解决SiP生命周期中跨多个芯粒的可测试性、可管理性和调试设计挑战,UCIe 2.0版更新的一个关键特性在于支持3D封装。
先进封装技术继2023年成为突出亮点之后,今年继续掀起波澜,并与半导体行业新星——chiplet的命运密切相连。
人工智能(AI)是促进硅光子技术广泛应用的杀手级应用吗?鉴于过去几年AI的爆炸式增长推动了对高速互连和更高带宽的需求,以及随之而来的以太网光收发器的需求,人们可能会这么认为。
目前,智能终端NFC功能的使用频率越来越高,面对新场景新需求,ITMA多家成员单位一起联合推动iTAP(智能无感接近式协议)标准化项目,预计25年上半年发布1.0标准,通过功能测试、兼容性测试,确保新技术产业应用。
中科院微电子所集成电路制造技术重点实验室刘明院士团队提出了一种基于记忆交叉阵列的符号知识表示解决方案,首次实验演示并验证了忆阻神经-模糊硬件系统在无监督、有监督和迁移学习任务中的应用……
C&K Switches EITS系列直角照明轻触开关提供表面贴装 PIP 端子和标准通孔配置,为电信、数据中心和专业音频/视频设备等广泛应用提供创新的多功能解决方案。
投身国产浪潮向上而行,英韧科技再获“中国芯”认可
‍‍12月18日,深圳雷曼光电科技股份有限公司(下称“雷曼光电”)与成都辰显光电有限公司(下称“辰显光电”)在成都正式签署战略合作协议。双方将充分发挥各自在技术创新、产品研发等方面的优势,共同推进Mi
12月18日,珠海京东方晶芯科技举行设备搬入仪式。插播:加入LED显示行业群,请加VX:hangjia188在10月31日,珠海京东方晶芯科技有限公司发布了Mini/Micro LED COB显示产品
对于华为来说,今年的重磅机型都已经发完了,而明年的机型已经在研发中,Pura 80就是期待很高的一款。有博主爆料称,华为Pura 80将会用上了豪威OV50K传感器,同时电池容量达到5600毫安时。至
有博主基于曝光的信息绘制了iPhone 17系列渲染图,对比iPhone 16系列,17系列最大变化是采用横置相机模组,背部DECO为条形跑道设计,神似谷歌Pixel 9系列,这是iPhone六年来的
来源:IT之家12 月 18 日消息,LG Display 韩国当地时间今日宣布,已将自行开发的“AI 生产系统”投入到 OLED 生产线的日常运行之中,该系统可提升 LG Display 的 OLE
“ 洞悉AI,未来触手可及。”整理 | 美股研究社在这个快速变化的时代,人工智能技术正以前所未有的速度发展,带来了广泛的机会。《AI日报》致力于挖掘和分析最新的AI概念股公司和市场趋势,为您提供深度的
万物互联的时代浪潮中,以OLED为代表的新型显示技术,已成为人机交互、智能联结的重要端口。维信诺作为中国OLED赛道的先行者和引领者,凭借自主创新,实现了我国OLED技术的自立自强,成为中国新型显示产
在上海嘉定叶城路1688号的极越办公楼里,最显眼的位置上,写着一句话:“中国智能汽车史上,必将拥有每个极越人的名字。”本以为这句话是公司的企业愿景,未曾想这原来是命运的嘲弄。毕竟,极越用一种极其荒唐的
点击蓝字 关注我们电网和可再生能源系统向着更智能、更高效的方向发展助力优化能源分配构建更加绿色和可靠的能源未来12 月 24 日 上午 9:30 - 11:302024 德州仪器新能源基础设施技术直播
亲爱的企业用户和开发者朋友们距离2024 RT-Thread开发者大会正式开幕仅剩最后3天!还没报名的小伙伴,抓紧报名噢,12月21日不见不散!大会时间与地点时间:2024年12月21日 9:30-1